MARKOV CHAINS

A MARKOV CHAIN

A.1 READING TRANSITION DIAGRAMS

Ex 1: A laboratory rat is placed in a maze with two rooms,
Room A and Room B. The transition diagram below shows the
probability of the rat moving between rooms or staying in the
same room every minute.
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1. If the rat is in Room A, what is the probability it moves to
Room B in the next minute?

2. If the rat is in Room B, what is the probability it stays in
Room B in the next minute?

3. Verify that the sum of probabilities leaving each state is
equal to 1.

Answer:

1. The arrow from A to B is labeled 0.7. The probability is
0.7.

2. The loop on B is labeled 0.6. The probability is 0.6.

3. For state A: 0.3(stay) + 0.7(move) = 1. For state B:

0.6(stay) + 0.4(move) = 1.

Ex 2: Two companies, C7 and Cs, compete for customers. The
transition diagram below shows the weekly change in customers.
Find the missing values = and y.

0.15
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Answer: The sum of the probabilities on all arrows leaving a single
state must equal 1.

e For C;: x+015=1 — z=1-0.15=0.85.

e For Cy: 085 +y=1 = y=1-0.85=0.15.
Ex 3: A student can be either "Late" (L) or "On Time" (T) for
class.

e If the student is Late one day, there is a 20% probability
they will be Late again the next day.

e If the student is On Time one day, there is a 10% probability
they will be Late the next day.

Draw the transition diagram representing this situation.

Answer:

e From Late (L): P(L — L) = 0.2. Therefore P(L — T) =
1-02=038.

e From On Time (T): P(T — L) = 0.1. Therefore P(T —
T)=1-10.1=0.09.
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Ex 4: Three brands of cereal, A, B, and C, dominate the
market. The transition diagram below shows the probability
of a customer switching brands or staying with the same brand
next week.

Find the missing probabilities z,y and z.

Answer: The sum of all probabilities leaving a node must equal 1.

e State A: 2+0.14+03=1 = 2=1-0.4=0.6.
e State B: 02+y+04=1 = y=1-0.6=04.

e State C: 0.14+024+2=1 = 2=1-0.3=0.7.

Ex 5: A machine in a factory can be in one of three states:
Working (W), Idle (I), or Broken (B).
The transition probabilities per hour are:

e If Working: 80% chance to stay Working, 10% to become
Idle, 10% to become Broken.

e If Idle: 50% chance to become Working, 40% to stay Idle,
10% to Break.

e If Broken: 0% chance to become Idle, 60% chance to be
Repaired (Working), 40% to stay Broken.

Draw the transition diagram for this system.

Answer:



B MATRIX REPRESENTATION

B.1 DEFINING AND VALIDATING STATE VECTORS

Ex 6: A system has two states, A and B. Currently, the system
is certainly in state A. Write down the initial state matrix sg.

()

Ex 7: A population is divided between City (C) and Suburbs
(S). Imitially, 70% of people live in the City and 30% in the
Suburbs. Write the initial state matrix sg.

o — 0.7

°~ 103
Ex 8: Which of the following cannot be a valid state matrix?
Explain why.

1 (p2)
2 (03)
s ()

Answer:

Answer:

Answer:

e Valid (0.54+0.5=1).
e Invalid. The sum is 0.2+ 0.9 =1.1 # 1.
e Invalid. Probabilities cannot be negative (—0.1).
Ex 9: A market study tracks the preference between two

smartphone brands, Brand X and Brand Y. The state of the
market after 2 months is given by the state matrix:

0.4
2= (O.G)

1. Interpret the meaning of the value 0.4 in the context of the
problem.
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2. Interpret the meaning of the value 0.6 in the context of the
problem.

Answer:

1. The value 0.4 represents the probability (or proportion) that
a customer chooses Brand X after 2 months.

2. The value 0.6 represents the probability (or proportion) that
a customer chooses Brand Y after 2 months.

B.2 BUILDING AND INTERPRETING TRANSITION
MATRICES

04 0.7
What is the probability of moving from state 2 (column 2) to
state 1 (row 1)?

Ex 10: A transition matrix is given by T = <0'6 0'3>.

Answer: The value is t1o = 0.3. The probablhty is 0.3.

Ex 11: Find the missing value x in the following transition
matrix:
0.2 0.5
T= ( x 0.5>

Answer: The sum of the first column must be 1.

0242rx=1 = x=0.8

Ex 12: A computer can be either "On" or "Sleep".
e If it is On, there is a 90% chance it stays On.
e If it is Sleep, there is a 20% chance it turns On.

Construct the transition matrix T (using the order On, then
Sleep).

Answer: From "On" (Column 1): 0.9 to "On", so 1 — 0.9 = 0.1 to
"Sleep".
From "Sleep" (Column 2): 0.2 to "On", so 1 — 0.2 = 0.8 to

"Sleep".
0.9 0.2
T= (O.l 0.8>

Ex 13: Consider the transition diagram below.
corresponding transition matrix T.

0.6
0.4 0.1
0.9

04 0.9
T= <0.6 0.1>
Ex 14: A marketing model tracks customers buying Brand A,
Brand B, or Brand C. The transition matrix is:

Write the

Answer:

0.8 0.1 0.1
T=|(01 07 02
0.1 02 0.7

If a customer buys Brand B this week, what is the probability
they will buy Brand C next week?

Answer: We look at Column 2 (From B) and Row 3 (To C). The
value is 0.2 (20%).

Ex 15: Construct the transition matrix for a 3-state system (X,
Y, Z) given:
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e X always stays X.
e Y goes to X half the time, and Z half the time.

e 7 goes to Y with probability 1.

Answer:

1 05 0
T=10 0 1
0 05 0
(Rows are X, Y, Z; Columns are X, Y, Z).

C STATE VECTORS
PROBABILITIES

AND FUTURE

C.1 CALCULATING AND PREDICTING STATES
AFTER ONE STEP

E
GICT:
0]

Ex 16: 22 A rental car company has cars at Location X and
Location Y. The transition matrix for weekly movement is T =
0.8 0.4
0.2 06/
Initially, 50% of the cars are at X and 50% are at Y.
Find the distribution of cars after 1 week.

Answer: The initial state is So = (8?) .

S = TSO

(08 04) (05
~\02 06)\05
0.8-0.54+0.4-0.5
0.2-0.540.6-0.5

(06
—\04
After 1 week, 60% of cars are at X and 40% are at Y.

[
B
6]

Ex 17: 22 11 an election campaign, voters support either Party
A or Party B. The transition matrix representing the shift in

support each month is T = (0'9 02).

0.1 0.8
Currently, 40% of voters support Party A and 60% support Party
B.
Find the distribution of voter support after 1 month.

Answer: The initial state is sg = 0.4 .
0.6
s; = T'sg
(09 0.2) (04
~\0.1 0.8/)\0.6
~(09:04+0.2-0.6
~\0.1-04+0.8-0.6

_ (0.3640.12
~\0.04+0.48
(048
—\0.52

After 1 month, 48% of voters support Party A and 52% support
Party B.
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Ex 18: Two internet service providers, FastNet and SpeedWeb,
compete for subscribers. The transition matrix representing
0.8 0.1

0.2 09)/)°

Currently, FastNet has 30% of the market and SpeedWeb has
70%.

Find the market share of each provider after 1 year.

annual customer switching is T =

Answer: The initial state is sg = 0.3 .
0.7
S1 = TSO
~ (0.8 0.1\ (0.3
~\0.2 0.9)\0.7
0.8-0.340.1-0.7
0.2-0.340.9-0.7

_(0.2440.07

~\0.06 + 0.63

(031

~\0.69
After 1 year, FastNet has 31% of the market and SpeedWeb has
69%.

C.2 CALCULATING AND PREDICTING STATES
AFTER TWO STEPS

E)
G,
5]

Ex 19: Z2 A rental car company has cars at Location X and
Location Y. The transition matrix for weekly movement is T =
0.8 0.4
0.2 0.6/
Initially, 50% of the cars are at X and 50% are at Y.
Find the distribution of cars after 2 weeks.

Answer: The initial state is sg = <8§>

e Method 1: Using Matrix Powers (s; = T?s()
T2 0.8 0.4\ (0.8 04\ (072 0.56
~\0.2 06/\0.2 06/ \0.28 0.44

_(0.72 0.56 0.5\ [0.64
%27 028 044) \05) ~ \0.36
e Method 2: Step-by-Step (s; = Tsy then so = Tsy)

L _ (08 04) (05 _ (06

7 \02 06)\05) \o4
(08 0.4) (0.6

2= 102 06/ \04
~(0.64
~\0.36

After 2 weeks, 64% of cars are at X and 36% are at Y.

E
GCT:
0]

Ex 20: Z= 1 an election campaign, voters support either Party
A or Party B. The transition matrix representing the shift in
0.9 0.2

0.1 0.8)/)°

Currently, 40% of voters support Party A and 60% support Party
B

Find the distribution of voter support after 2 months.

support each month is T =

Answer: The initial state is sg = <82>


www.commeunjeu.com

. . . _ 2
e Method 1: Using Matrix Powers (s; = T"s) 1. Find the steady state vector s = (5) algebraically by

T2 _ 0.9 0.2 0.9 0.2 _ 0.83 0.34 Solving the system Ts = s.
0.1 0.8/\0.1 0.8 0.17 0.66
2. Interpret the result in terms of market share in the long run.
o — 0.83 0.34\ 0.4\ [0.536
>~ \0.17 0.66) \0.6) ~ \0.464 Answer:
e Method 2: Step-by-Step (s; = Ts( then s; = Ts;) 1. Find an eigenvector for A = 1:

R ERIOND

o _ (09 02) (048 0.3 08/ \y y
>7\o01 0.8)\0.52 0.704+02y\ [z
0.536 0.3z +08y)  \y
~\0.464 This gives 0.72 4+ 0.2y = = and 0.3z + 0.8y = y.
Simplifying, we get —0.3z 4+ 0.2y = 0 and 0.3z — 0.2y = 0.
After 2 months, 53.6% of voters support Party A and 46.4% Thus 0.3z = 0.2y, which implies 3x = 2y.
support Party B. Letting y = 3t, we have x = 2t, so:
Ex 21: A student is studying. If they study today, there is a %
60% chance they study tomorrow. If they don’t study today, S= 3¢

there is a 30% chance they study tomorrow.
Assume the student studies today. Calculate the probability they

Since s is a state vector, the sum of its components must be
will not study in 2 days. :

24+3t=1 = dt=1 = t=0.2

Answer: Let S be "Studying" and N be "Not Studying". The 0.2.9 0.4
initial state is sg = (é) (Studies today). - <0.2 . 3) - (0.6>
- .. (0.6 0.3 2. In the long run, Supermarket A will have 40% of the market
The transition matrix is T = 04 0 7) (where the first column share and Supermarket B will have 60%.
is from S and the second from N).
e Method 1: Using Matrix Powers (sy = T?s) @
Ex 23: In a region, people move between the City (C) and
T2 0.6 03\ /06 03\ [048 0.39 the Suburbs (S). The transition matrix representing the annual
—\04 07/\04 0.7) \0.52 0.61 . S 0.9 0.2
migration is given by T = .
0.1 0.8
. (0.48 0.39) (1) _ (0.48>
5 = =
0.52 0.61/ \0 0.52 1. Find the steady state vector s = (g) algebraically by
e Method 2: Step-by-Step (s; = Tsp then sy = Tsq) solving the system Ts = s.
(0.6 0.3\ /1) (0.6 2. Interpret the result in terms of the long-term population
=104 07)\0) ~ \04 distribution.
o — 0.6 0.3\ (0.6 , .
27 \04 0.7)\04 e
<0.6(0.6) + 0_3(0_4)) 1. Find an eigenvector for A\ = 1:
0.4(0.6) + 0.7(0.4) Ts — s
0.36 + 0.12)
= 09 0.2\ [z T
(034 o2 (0902 (*) = (%)
_ (8;12) 0.9z +0.2y\ _ (a
' 0.1z +0.8y)  \y
The probability they will not study is the second component: This gives 0.92 + 0.2y = = and 0.1z + 0.8y = y.
0.52 or 52%. Simplifying, we get —0.1z 4+ 0.2y = 0 and 0.1z — 0.2y = 0.
Thus 0.1z = 0.2y, which implies = = 2y.
D STEADY STATE Letting y = ¢, we have x = 2t, so:
o (2
D.1 FINDING STEADY STATE 3
Since s is a state vector, the sum of its components must be
E
EE
Ex 22: 22 Two supermarket chains, A and B, compete for UH4t=1 = 3t=1 — t = 1
customers. The transition matrix representing the weekly change 3
i oust " < wiven by T — (07 02 72-§7§N0.67
in customer preference is given by T = { 15 ¢ |- s= % =\ ~ {033
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2. In the long run, about 67% of the population will live in the
City and 33% in the Suburbs.

 — |
Ex 24: =& Ty, streaming services, Netstream and MoviePlus,

compete for subscribers. The transition matrix representing the
0.6 0.3>

monthly change is T = <0.4 0.7

1. Find the steady state vector s = (;j) algebraically by

solving the system Ts = s.

2. Interpret the result in terms of market share in the long run.

Answer:
1. Find an eigenvector for \ = 1:
Ts=s
06 03\ (z\ (=
04 07)\y)  \y
0.6z +03y\ [z
04z +0.7y)  \y
This gives 0.6x + 0.3y = z and 0.4z + 0.7y = y.
Simplifying, we get —0.4z 4+ 0.3y = 0 and 0.4z — 0.3y = 0.

Thus 0.4z = 0.3y, which implies 4z = 3y.
Letting = 3t, we have y = 4¢, so:

- (%)

Since s is a state vector, the sum of its components must be
1: 1
St+dt=1 = Tt=1 = t:?

.1 3
< 3 )= (7)~ 0.43
4.z = 0.57
2. In the long run, Netstream will have approximately 43% of
the market share and MoviePlus will have 57%.
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