
MARKOV CHAINS

A MARKOV CHAIN

A.1 READING TRANSITION DIAGRAMS

Ex 1: A laboratory rat is placed in a maze with two rooms,
Room A and Room B. The transition diagram below shows the
probability of the rat moving between rooms or staying in the
same room every minute.

A B0.3 0.6

0.7

0.4

1. If the rat is in Room A, what is the probability it moves to
Room B in the next minute?

2. If the rat is in Room B, what is the probability it stays in
Room B in the next minute?

3. Verify that the sum of probabilities leaving each state is
equal to 1.

Answer:

1. The arrow from A to B is labeled 0.7. The probability is
0.7.

2. The loop on B is labeled 0.6. The probability is 0.6.

3. For state A: 0.3(stay) + 0.7(move) = 1. For state B:
0.6(stay) + 0.4(move) = 1.

Ex 2: Two companies, C1 and C2, compete for customers. The
transition diagram below shows the weekly change in customers.
Find the missing values x and y.

C1 C2x 0.85

0.15

y

Answer: The sum of the probabilities on all arrows leaving a single
state must equal 1.

• For C1: x+ 0.15 = 1 =⇒ x = 1− 0.15 = 0.85.

• For C2: 0.85 + y = 1 =⇒ y = 1− 0.85 = 0.15.

Ex 3: A student can be either "Late" (L) or "On Time" (T) for
class.

• If the student is Late one day, there is a 20% probability
they will be Late again the next day.

• If the student is On Time one day, there is a 10% probability
they will be Late the next day.

Draw the transition diagram representing this situation.

Answer:

• From Late (L): P (L → L) = 0.2. Therefore P (L → T ) =
1− 0.2 = 0.8.

• From On Time (T): P (T → L) = 0.1. Therefore P (T →
T ) = 1− 0.1 = 0.9.

L T0.2 0.9

0.8

0.1

Ex 4: Three brands of cereal, A, B, and C, dominate the
market. The transition diagram below shows the probability
of a customer switching brands or staying with the same brand
next week.
Find the missing probabilities x, y and z.
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Answer: The sum of all probabilities leaving a node must equal 1.

• State A: x+ 0.1 + 0.3 = 1 =⇒ x = 1− 0.4 = 0.6.

• State B: 0.2 + y + 0.4 = 1 =⇒ y = 1− 0.6 = 0.4.

• State C: 0.1 + 0.2 + z = 1 =⇒ z = 1− 0.3 = 0.7.

Ex 5: A machine in a factory can be in one of three states:
Working (W), Idle (I), or Broken (B).
The transition probabilities per hour are:

• If Working: 80% chance to stay Working, 10% to become
Idle, 10% to become Broken.

• If Idle: 50% chance to become Working, 40% to stay Idle,
10% to Break.

• If Broken: 0% chance to become Idle, 60% chance to be
Repaired (Working), 40% to stay Broken.

Draw the transition diagram for this system.

Answer:
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B MATRIX REPRESENTATION

B.1 DEFINING AND VALIDATING STATE VECTORS

Ex 6: A system has two states, A and B. Currently, the system
is certainly in state A. Write down the initial state matrix s0.

Answer:

s0 =

(
1
0

)
Ex 7: A population is divided between City (C) and Suburbs
(S). Initially, 70% of people live in the City and 30% in the
Suburbs. Write the initial state matrix s0.

Answer:

s0 =

(
0.7
0.3

)
Ex 8: Which of the following cannot be a valid state matrix?
Explain why.

1.
(
0.5
0.5

)

2.
(
0.2
0.9

)

3.
(
−0.1
1.1

)
Answer:

• Valid (0.5 + 0.5 = 1).

• Invalid. The sum is 0.2 + 0.9 = 1.1 6= 1.

• Invalid. Probabilities cannot be negative (−0.1).

Ex 9: A market study tracks the preference between two
smartphone brands, Brand X and Brand Y. The state of the
market after 2 months is given by the state matrix:

s2 =

(
0.4
0.6

)
1. Interpret the meaning of the value 0.4 in the context of the

problem.

2. Interpret the meaning of the value 0.6 in the context of the
problem.

Answer:

1. The value 0.4 represents the probability (or proportion) that
a customer chooses Brand X after 2 months.

2. The value 0.6 represents the probability (or proportion) that
a customer chooses Brand Y after 2 months.

B.2 BUILDING AND INTERPRETING TRANSITION
MATRICES

Ex 10: A transition matrix is given by T =

(
0.6 0.3
0.4 0.7

)
.

What is the probability of moving from state 2 (column 2) to
state 1 (row 1)?

Answer: The value is t12 = 0.3. The probability is 0.3.

Ex 11: Find the missing value x in the following transition
matrix:

T =

(
0.2 0.5
x 0.5

)
Answer: The sum of the first column must be 1.

0.2 + x = 1 =⇒ x = 0.8

Ex 12: A computer can be either "On" or "Sleep".

• If it is On, there is a 90% chance it stays On.

• If it is Sleep, there is a 20% chance it turns On.

Construct the transition matrix T (using the order On, then
Sleep).

Answer: From "On" (Column 1): 0.9 to "On", so 1− 0.9 = 0.1 to
"Sleep".
From "Sleep" (Column 2): 0.2 to "On", so 1 − 0.2 = 0.8 to
"Sleep".

T =

(
0.9 0.2
0.1 0.8

)
Ex 13: Consider the transition diagram below. Write the
corresponding transition matrix T.

A B0.4 0.1

0.6

0.9

Answer:

T =

(
0.4 0.9
0.6 0.1

)
Ex 14: A marketing model tracks customers buying Brand A,
Brand B, or Brand C. The transition matrix is:

T =

0.8 0.1 0.1
0.1 0.7 0.2
0.1 0.2 0.7


If a customer buys Brand B this week, what is the probability
they will buy Brand C next week?

Answer: We look at Column 2 (From B) and Row 3 (To C). The
value is 0.2 (20%).

Ex 15: Construct the transition matrix for a 3-state system (X,
Y, Z) given:

www.commeunjeu.com 2

www.commeunjeu.com


• X always stays X.

• Y goes to X half the time, and Z half the time.

• Z goes to Y with probability 1.

Answer:

T =

1 0.5 0
0 0 1
0 0.5 0


(Rows are X, Y, Z; Columns are X, Y, Z).

C STATE VECTORS AND FUTURE
PROBABILITIES

C.1 CALCULATING AND PREDICTING STATES
AFTER ONE STEP

Ex 16: A rental car company has cars at Location X and
Location Y. The transition matrix for weekly movement is T =(
0.8 0.4
0.2 0.6

)
.

Initially, 50% of the cars are at X and 50% are at Y.
Find the distribution of cars after 1 week.

Answer: The initial state is s0 =

(
0.5
0.5

)
.

s1 = Ts0

=

(
0.8 0.4
0.2 0.6

)(
0.5
0.5

)
=

(
0.8 · 0.5 + 0.4 · 0.5
0.2 · 0.5 + 0.6 · 0.5

)
=

(
0.6
0.4

)
After 1 week, 60% of cars are at X and 40% are at Y.

Ex 17: In an election campaign, voters support either Party
A or Party B. The transition matrix representing the shift in

support each month is T =

(
0.9 0.2
0.1 0.8

)
.

Currently, 40% of voters support Party A and 60% support Party
B.
Find the distribution of voter support after 1 month.

Answer: The initial state is s0 =

(
0.4
0.6

)
.

s1 = Ts0

=

(
0.9 0.2
0.1 0.8

)(
0.4
0.6

)
=

(
0.9 · 0.4 + 0.2 · 0.6
0.1 · 0.4 + 0.8 · 0.6

)
=

(
0.36 + 0.12
0.04 + 0.48

)
=

(
0.48
0.52

)
After 1 month, 48% of voters support Party A and 52% support
Party B.

Ex 18: Two internet service providers, FastNet and SpeedWeb,
compete for subscribers. The transition matrix representing

annual customer switching is T =

(
0.8 0.1
0.2 0.9

)
.

Currently, FastNet has 30% of the market and SpeedWeb has
70%.
Find the market share of each provider after 1 year.

Answer: The initial state is s0 =

(
0.3
0.7

)
.

s1 = Ts0

=

(
0.8 0.1
0.2 0.9

)(
0.3
0.7

)
=

(
0.8 · 0.3 + 0.1 · 0.7
0.2 · 0.3 + 0.9 · 0.7

)
=

(
0.24 + 0.07
0.06 + 0.63

)
=

(
0.31
0.69

)
After 1 year, FastNet has 31% of the market and SpeedWeb has
69%.

C.2 CALCULATING AND PREDICTING STATES
AFTER TWO STEPS

Ex 19: A rental car company has cars at Location X and
Location Y. The transition matrix for weekly movement is T =(
0.8 0.4
0.2 0.6

)
.

Initially, 50% of the cars are at X and 50% are at Y.
Find the distribution of cars after 2 weeks.

Answer: The initial state is s0 =

(
0.5
0.5

)
.

• Method 1: Using Matrix Powers (s2 = T2s0)

T2 =

(
0.8 0.4
0.2 0.6

)(
0.8 0.4
0.2 0.6

)
=

(
0.72 0.56
0.28 0.44

)
s2 =

(
0.72 0.56
0.28 0.44

)(
0.5
0.5

)
=

(
0.64
0.36

)
• Method 2: Step-by-Step (s1 = Ts0 then s2 = Ts1)

s1 =

(
0.8 0.4
0.2 0.6

)(
0.5
0.5

)
=

(
0.6
0.4

)
s2 =

(
0.8 0.4
0.2 0.6

)(
0.6
0.4

)
=

(
0.64
0.36

)
After 2 weeks, 64% of cars are at X and 36% are at Y.

Ex 20: In an election campaign, voters support either Party
A or Party B. The transition matrix representing the shift in

support each month is T =

(
0.9 0.2
0.1 0.8

)
.

Currently, 40% of voters support Party A and 60% support Party
B.
Find the distribution of voter support after 2 months.

Answer: The initial state is s0 =

(
0.4
0.6

)
.
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• Method 1: Using Matrix Powers (s2 = T2s0)

T2 =

(
0.9 0.2
0.1 0.8

)(
0.9 0.2
0.1 0.8

)
=

(
0.83 0.34
0.17 0.66

)

s2 =

(
0.83 0.34
0.17 0.66

)(
0.4
0.6

)
=

(
0.536
0.464

)
• Method 2: Step-by-Step (s1 = Ts0 then s2 = Ts1)

s1 =

(
0.9 0.2
0.1 0.8

)(
0.4
0.6

)
=

(
0.48
0.52

)
s2 =

(
0.9 0.2
0.1 0.8

)(
0.48
0.52

)
=

(
0.536
0.464

)
After 2 months, 53.6% of voters support Party A and 46.4%
support Party B.

Ex 21: A student is studying. If they study today, there is a
60% chance they study tomorrow. If they don’t study today,
there is a 30% chance they study tomorrow.
Assume the student studies today. Calculate the probability they
will not study in 2 days.

Answer: Let S be "Studying" and N be "Not Studying". The

initial state is s0 =

(
1
0

)
(Studies today).

The transition matrix is T =

(
0.6 0.3
0.4 0.7

)
(where the first column

is from S and the second from N).

• Method 1: Using Matrix Powers (s2 = T2s0)

T2 =

(
0.6 0.3
0.4 0.7

)(
0.6 0.3
0.4 0.7

)
=

(
0.48 0.39
0.52 0.61

)

s2 =

(
0.48 0.39
0.52 0.61

)(
1
0

)
=

(
0.48
0.52

)
• Method 2: Step-by-Step (s1 = Ts0 then s2 = Ts1)

s1 =

(
0.6 0.3
0.4 0.7

)(
1
0

)
=

(
0.6
0.4

)
s2 =

(
0.6 0.3
0.4 0.7

)(
0.6
0.4

)
=

(
0.6(0.6) + 0.3(0.4)
0.4(0.6) + 0.7(0.4)

)
=

(
0.36 + 0.12
0.24 + 0.28

)
=

(
0.48
0.52

)
The probability they will not study is the second component:
0.52 or 52%.

D STEADY STATE

D.1 FINDING STEADY STATE

Ex 22: Two supermarket chains, A and B, compete for
customers. The transition matrix representing the weekly change

in customer preference is given by T =

(
0.7 0.2
0.3 0.8

)
.

1. Find the steady state vector s =

(
x
y

)
algebraically by

solving the system Ts = s.

2. Interpret the result in terms of market share in the long run.

Answer:

1. Find an eigenvector for λ = 1:

Ts = s(
0.7 0.2
0.3 0.8

)(
x
y

)
=

(
x
y

)
(
0.7x+ 0.2y
0.3x+ 0.8y

)
=

(
x
y

)
This gives 0.7x+ 0.2y = x and 0.3x+ 0.8y = y.
Simplifying, we get −0.3x+ 0.2y = 0 and 0.3x− 0.2y = 0.
Thus 0.3x = 0.2y, which implies 3x = 2y.
Letting y = 3t, we have x = 2t, so:

s =

(
2t
3t

)
Since s is a state vector, the sum of its components must be
1:

2t+ 3t = 1 =⇒ 5t = 1 =⇒ t = 0.2

s =

(
0.2 · 2
0.2 · 3

)
=

(
0.4
0.6

)
2. In the long run, Supermarket A will have 40% of the market

share and Supermarket B will have 60%.

Ex 23: In a region, people move between the City (C) and
the Suburbs (S). The transition matrix representing the annual

migration is given by T =

(
0.9 0.2
0.1 0.8

)
.

1. Find the steady state vector s =

(
x
y

)
algebraically by

solving the system Ts = s.

2. Interpret the result in terms of the long-term population
distribution.

Answer:

1. Find an eigenvector for λ = 1:

Ts = s(
0.9 0.2
0.1 0.8

)(
x
y

)
=

(
x
y

)
(
0.9x+ 0.2y
0.1x+ 0.8y

)
=

(
x
y

)
This gives 0.9x+ 0.2y = x and 0.1x+ 0.8y = y.
Simplifying, we get −0.1x+ 0.2y = 0 and 0.1x− 0.2y = 0.
Thus 0.1x = 0.2y, which implies x = 2y.
Letting y = t, we have x = 2t, so:

s =

(
2t
t

)
Since s is a state vector, the sum of its components must be
1:

2t+ t = 1 =⇒ 3t = 1 =⇒ t =
1

3

s =

(
2 · 13

1
3

)
=

(
2
3
1
3

)
≈
(
0.67
0.33

)

www.commeunjeu.com 4

www.commeunjeu.com


2. In the long run, about 67% of the population will live in the
City and 33% in the Suburbs.

Ex 24: Two streaming services, Netstream and MoviePlus,
compete for subscribers. The transition matrix representing the

monthly change is T =

(
0.6 0.3
0.4 0.7

)
.

1. Find the steady state vector s =

(
x
y

)
algebraically by

solving the system Ts = s.

2. Interpret the result in terms of market share in the long run.

Answer:

1. Find an eigenvector for λ = 1:

Ts = s(
0.6 0.3
0.4 0.7

)(
x
y

)
=

(
x
y

)
(
0.6x+ 0.3y
0.4x+ 0.7y

)
=

(
x
y

)
This gives 0.6x+ 0.3y = x and 0.4x+ 0.7y = y.
Simplifying, we get −0.4x+ 0.3y = 0 and 0.4x− 0.3y = 0.
Thus 0.4x = 0.3y, which implies 4x = 3y.
Letting x = 3t, we have y = 4t, so:

s =

(
3t
4t

)
Since s is a state vector, the sum of its components must be
1:

3t+ 4t = 1 =⇒ 7t = 1 =⇒ t =
1

7

s =

(
3 · 17
4 · 17

)
=

(
3
7
4
7

)
≈
(
0.43
0.57

)
2. In the long run, Netstream will have approximately 43% of

the market share and MoviePlus will have 57%.
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