A LOGARITHMS IN BASE 10

A.1 EVALUATING LOGARITHMS

Ex 1: Evaluate:

 $\log 100 =$

Ex 2: Evaluate:

 $\log 0.1 =$

Ex 3: Evaluate:

 $\log\left(\frac{1}{100}\right) = \boxed{}$

Ex 4: Evaluate:

 $\log \sqrt{10} =$

Ex 5: Evaluate:

 $\log 1 =$

A.2 EVALUATING USING A CALCULATOR

Ex 6: Evaluate (round to 2 decimal places).

 $\log(2) \approx$

Ex 7: Evaluate (round to 2 decimal places).

 $\log(0.2) \approx$

Ex 8: Evaluate (round to 2 decimal places).

 $\log(2 \times 10^9) \approx$

A.3 SOLVING EXPONENTIAL EQUATIONS USING LOGARITHMS

Ex 9: Find x such that $8 = 10^x$.

 $x \approx$ (rounded to 3 decimal places)

Ex 10: Find x such that $0.4 = 10^x$.

 $x \approx$ (rounded to 3 decimal places)

Ex 11: Find x such that $250 = 10^x$. $x \approx$ (rounded to 3 decimal places)

A.4 SOLVING FOR x WHEN $\log(x)$ IS GIVEN

Ex 12: Find x such that $\log(x) = 3$.

 $x = \square$

Ex 13: Find x such that $\log(x) = -1$.

 $x = \boxed{}$

Ex 14: Find x such that $\log(x) = 0$.

Ex 15: Find x such that $\log(x) = 7$.

B LOGARITHMS IN BASE a

B.1 EVALUATING LOGARITHMS

Ex 16: Evaluate:

 $\log_2 8 =$

Ex 17: Evaluate:

 $\log_3 1/9 =$

Ex 18: Evaluate:

 $\log_5\left(\frac{1}{25}\right) = \square$

Ex 19: Evaluate:

 $\log_4 \sqrt{4} = \boxed{}$

Ex 20: Evaluate:

 $\log_7 1 =$

B.2 SOLVING FOR x WHEN $\log_a(x)$ IS GIVEN

Ex 21: Find x such that $\log_2(x) = 3$.

 $x = \boxed{}$

Ex 22: Find x such that $\log_2(x) = -1$.

Ex 23: Find x such that $\log_2(x) = 0$.

Ex 24: Find x such that $\log_2(x) = 7$.

C NATURAL LOGARITHM

C.1 EVALUATING NATURAL LOGARITHMS

Ex 25: Evaluate:

$$\ln e^3 =$$

Ex 26: Evaluate:

$$ln(1/e) =$$

Ex 27: Evaluate:

$$\ln\left(\frac{1}{e^2}\right) = \boxed{}$$

Ex 28: Evaluate:

$$\ln \sqrt{e} =$$

Ex 29: Evaluate:

D LAWS OF LOGARITHMS

D.1 WRITING AS A SINGLE LOGARITHM: LEVEL 1

Ex 30: Write as a single logarithm

$$\log(5) + \log(3) =$$

Ex 31: Write as a single logarithm in the form $\log k$:

$$\log(15) - \log(5) = \square$$

Ex 32: Write as a single logarithm in the form $\log k$:

$$\log(4) + \log\left(\frac{1}{2}\right) = \boxed{}$$

Ex 33: Write as a single logarithm in the form $\log k$:

$$\log(18) - \log(3) = \boxed{}$$

D.2 WRITING AS A SINGLE LOGARITHM: LEVEL 2

Ex 34: Write as a single logarithm in the form $\log k$:

$$\log(8) + 1 = \boxed{}$$

Ex 35: Write as a single logarithm in the form $\log k$:

$$\log(3) + 2 = \boxed{}$$

Ex 36: Write as a single logarithm in the form $\log k$:

$$2 - \log(25) = \boxed{}$$

Ex 37: Write as a single logarithm in the form $\log k$:

$$\log(200) - 2 = \boxed{}$$

D.3 WRITING AS A SINGLE LOGARITHM: LEVEL 3

Ex 38: Write as a single logarithm in the form $\log k$:

Ex 39: Write as a single logarithm in the form $\log k$:

Ex 40: Write as a single logarithm in the form $\log k$:

Ex 41: Write as a single logarithm in the form $\log k$:

$$2\log(30) - 1 = \boxed{}$$

D.4 WRITING AS A SINGLE NATURAL LOGARITHM: LEVEL 1

Ex 42: Write as a single logarithm

$$\ln(5) + \ln(3) =$$

Ex 43: Write as a single logarithm in the form $\ln k$:

$$\ln(15) - \ln(5) = \boxed{}$$

Ex 44: Write as a single logarithm

$$\ln(x) + \ln(x) = \boxed{}$$

Ex 45: Write as a single logarithm in the form $\ln k$:

$$\ln(20) - \ln(4) =$$

D.5 WRITING AS A SINGLE NATURAL LOGARITHM: LEVEL 2

Ex 46: Write as a single logarithm in the form $\ln k$:

$$ln(8) + 1 =$$

Ex 47: Write as a single logarithm in the form $\ln k$:

$$2 - \ln(5) = \boxed{}$$

Ex 48: Write as a single logarithm:

$$1 - \ln(x) = \boxed{}$$

Ex 49: Write as a single logarithm:

$$\ln(2) + x = \boxed{}$$

D.6 WRITING AS A SINGLE NATURAL LOGARITHM: LEVEL 3

Ex 50: Write as a single logarithm in the form $\ln k$:

Ex 51: Write as a single logarithm in the form $\ln k$:

Ex 52: Write as a single logarithm:

$$2\ln(x) + \ln(4) = \boxed{}$$

Ex 53: Write as a single logarithm:

$$3\ln(x) - 2\ln(\sqrt{x}) = \boxed{}$$

D.7 WRITING AS A SINGLE LOGARITHM IN BASE A: LEVEL 1

Ex 54: Write as a single logarithm

$$\log_2(5) + \log_2(3) = \boxed{}$$

Ex 55: Write as a single logarithm in the form $\log_a k$:

$$\log_3(18) - \log_3(6) = \boxed{}$$

D.8 WRITING AS A SINGLE LOGARITHM IN BASE A: LEVEL 2

Ex 56: Write as a single logarithm in the form $\log_a k$:

$$\log_5(4) + 1 = \boxed{}$$

Ex 57: Write as a single logarithm in the form $\log_a k$:

$$2 - \log_3(5) = \boxed{}$$

Ex 58: Write as a single logarithm:

$$\log_2(3) + x = \boxed{}$$

D.9 WRITING AS A SINGLE LOGARITHM IN BASE A: LEVEL 3

Ex 59: Write as a single logarithm in the form $\log_a k$:

$$2\log_6(3) + \log_6(4) = \boxed{}$$

Ex 60: Write as a single logarithm in the form $\log_a k$:

$$3\log_2(4) - \log_2(8) =$$

Ex 61: Write as a single logarithm:

$$\log_2(5) - 2x = \boxed{}$$

E CHANGE OF BASE RULE

E.1 EVALUATING LOGARITHMS USING CHANGE OF BASE FORMULA

Ex 62: Evaluate in changing to base 10(round to 2 decimal places).

$$\log_3(2) \approx$$

Ex 63: Evaluate by changing to base 10 (round to 2 decimal places).

$$\log_5(8) \approx$$

Ex 64: Evaluate by changing to base 10 (round to 2 decimal places).

$$\log_7(0.5) \approx$$

Ex 65: Evaluate by changing to base 10 (round to 2 decimal places).

$$\log_2(100) \approx$$

E.2 PROVING CHANGE OF BASE IDENTITIES

Ex 66: Prove that $\log_a b \cdot \log_b a = 1$.

67: Pro	ove that log	$g_a(b) \log_b(a)$	$(c) = \log_a($	c).	

Ex 68: Prove that $\log_{a^n}(b) = \frac{1}{n} \log_a(b)$.

Ex **75**: places).

Solve $-(2^x) = -10$ (give your answer to 3 decimal

x =

Ex 76: places).

Solve $4 \cdot 3^x = 60$ (give your answer to 3 decimal

x =

Ex 69: Prove that $\log_{1/a}(b) = -\log_a(b)$.

Ex 77:

Solve $-2 \cdot (0.5)^x = -4$.

x =

F.3 APPLYING EXPONENTIAL FUNCTIONS

Ex 78: The population of a town, P, is growing exponentially. The population can be modelled by the function $P(t) = 25000 \times 1.035^t$, where t is the number of years after the 1st of January 2020.

- 1. Write down the population of the town on the 1st of January 2020.
- 2. Calculate the population of the town after 5 years, giving your answer to the nearest whole number.
- 3. Determine the number of years it will take for the population to double. Give your answer to the nearest year.
- 4. Another town's population is modelled by the function $Q(t) = 40000 \times 1.018^t$. After how many years will the population of both towns be equal?

F USING LOGARITHMS TO SOLVE EXPONENTIAL EQUATIONS

F.1 SOLVING EXPONENTIAL EQUATIONS: LEVEL 1

Ex 70: Solve $2^x = 7$ (give your answer to 3 decimal places). x =

Ex 71: Solve $3^x = 15$ (give your answer to 3 decimal places).

x =

Ex 72: Solve $5^x = 100$ (give your answer to 3 decimal places).

x =

Ex 73: Solve $6^x = 80$ (give your answer to 3 decimal places).

x =

F.2 SOLVING EXPONENTIAL EQUATIONS: LEVEL 2

Ex 74: Solve $5 \cdot 2^x = 7$ (give your answer to 3 decimal places).

x =

Ex 79: The mass, M, in grams of a radioactive substance is modelled by the function $M(t) = 150 \times (0.88)^t$, where t is the time in years.

- 1. Write down the initial mass of the substance.
- 2. Calculate the mass of the substance remaining after 10 years, giving your answer to two decimal places.
- 3. Find the half-life of the substance. Give your answer to the nearest year.
- 4. Another radioactive substance has its mass modelled by the function $N(t) = 200 \times (0.85)^t$. Find the time it takes for the mass of both substances to be equal.

Ex 80: Laura invests \$8000 in a savings account that pays a nominal annual interest rate of 4.2%, compounded annually. The value of her investment, V, after t years is given by the formula $V(t) = 8000(1.042)^t$.

- 1. Find the value of Laura's investment after 7 years. Give your answer to two decimal places.
- 2. Determine the number of years it will take for the value of the investment to exceed \$15,000.
- 3. Marco also invests in an account with an initial amount of \$7500. After 10 years, his investment is worth \$11,000. Assuming the interest is also compounded annually, find the annual interest rate for Marco's investment.

G APPLICATIONS OF LOGARITHMS

G.1 APPLYING LOGARITHMS IN SCIENCE

Ex 81: The pH scale in chemistry is pH = $-\log_{10}[H^+]$ where $[H^+]$ is the hydrogen ion concentration in moles per litre. The pH of a solution is 3.2. Find the hydrogen ion concentration $[H^+]$ (give your answer in scientific notation with 3 significant digits).

Ex 82: The Richter scale measures earthquake intensity using the formula $M = \log_{10} \left(\frac{I}{I_0} \right)$, where M is the magnitude, I is the intensity of the earthquake, and I_0 is the intensity of a standard earthquake.

An earthquake has a magnitude of 4.5 on the Richter scale. Find the intensity ratio $\frac{I}{I_0}$ (give your answer in scientific notation with 3 significant digits).

$$\frac{I}{I_0} = \times$$

Ex 83: The intensity of sound is measured in decibels (dB) using the formula $L = 10 \log_{10} \left(\frac{I}{I_0}\right)$, where L is the sound level in decibels, I is the intensity of the sound, and I_0 is the reference intensity (threshold of human hearing).

A sound has a level of 75 decibels. Find the intensity ratio $\frac{I}{I_0}$ (give your answer in scientific notation with 3 significant digits).

$$\frac{I}{I_0} = \times$$