LOGARITHM FUNCTIONS

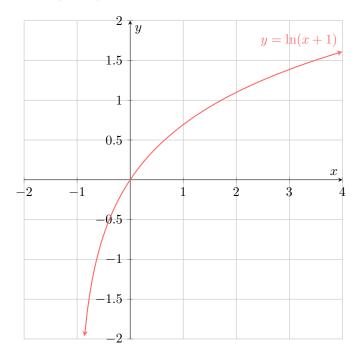
A NATURAL LOGARITHM FUNCTION

A.1 DETERMINING DOMAINS OF LOGARITHMIC **FUNCTIONS**

MCQ 1: What is the domain of the function $f(x) = \ln(x+1)$?

- \square $(-\infty,\infty)$
- \Box $(-\infty, -1]$
- \boxtimes $(-1,\infty)$
- \square $[0,\infty)$

Answer: The natural logarithm $\ln y$ is defined for y > 0. For $f(x) = \ln(x+1)$, we need $x+1>0 \implies x>-1$. Thus, the domain is $(-1, \infty)$.



MCQ 2: Find the domain of the function $f: x \mapsto \ln(2-x)$.

- $\square \mathbb{R}$
- $\Box [-2,+\infty)$
- \square $(2,+\infty)$
- $\boxtimes (-\infty, 2)$

Answer: The function $f(x) = \ln(2-x)$ is defined only when the argument of the logarithm is strictly positive, i.e., when 2-x>0. Solving this inequality:

- 2 x > 0
 - -x > -2 (subtracting 2 from both sides)
 - x < 2 (multiplying both sides by -1, reversing the inequality) \square [-1,1]

Therefore, the function is defined for x < 2, so the domain is $(-\infty,2)$.

MCQ 3: Find the domain of the function $f: x \mapsto \ln(2x - 6)$.

 \square \mathbb{R}

- \square $[3,+\infty)$
- \boxtimes $(3, +\infty)$
- \Box $(-\infty,3)$

Answer: The function $f(x) = \ln(2x - 6)$ is defined only when the argument of the logarithm is strictly positive, i.e., when 2x-6 >0. Solving this inequality:

$$2x - 6 > 0$$

2x > 6 (adding 6 to both sides)

x > 3(dividing both sides by 2)

Therefore, the function is defined for x > 3, so the domain is $(3,+\infty)$.

MCQ 4: Find the domain of the function $f: x \mapsto \ln(9-3x)$.

- \square \mathbb{R}
- \square $[3,+\infty)$
- \square $(3,+\infty)$
- $\boxtimes (-\infty,3)$

Answer: The function $f(x) = \ln(9-3x)$ is defined only when the argument of the logarithm is strictly positive, i.e., when 9-3x >0. Solving this inequality:

- 9 3x > 0
 - -3x > -9 (subtracting 9 from both sides)

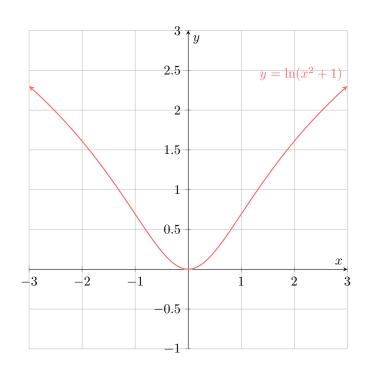
x < 3 (dividing both sides by -3, reversing the inequality)

Therefore, the function is defined for x < 3, so the domain is $(-\infty,3)$.

MCQ 5: What is the domain of the function $f(x) = \ln(x^2 + 1)$?

- $\boxtimes (-\infty, \infty)$
- \Box $(-\infty,0)\cup(0,\infty)$
- \Box (-1,1)

Answer: The natural logarithm $\ln y$ is defined for y > 0. For $f(x) = \ln(x^2 + 1)$, we need $x^2 + 1 > 0$. Since $x^2 \ge 0$ for all real $x, x^2 + 1 \ge 1 > 0$. Thus, the domain is all real numbers, $(-\infty,\infty)$.



MCQ 6: What is the domain of the function $f(x) = \ln(-x^2 + 3x - 2)$?

- \Box $(-\infty,\infty)$
- $\Box (-\infty,1] \cup [2,\infty)$
- \boxtimes (1,2)
- \square [1, 2]

Answer: The natural logarithm $\ln y$ is defined for y>0. For $f(x)=\ln(-x^2+3x-2)$, we need $-x^2+3x-2>0$. Solving: $x^2-3x+2<0$. Factor: (x-1)(x-2)<0. The inequality holds between the roots: 1< x<2. Thus, the domain is (1,2).

A.2 CALCULATING f(x)

Ex 7: For $f: x \mapsto 3\ln(x)$, find in simplest form:

- 1. $f(1) = \boxed{0}$
- 2. $f(e) = \boxed{3}$

Answer:

- 1. $f(1) = 3 \ln(1)$ = $3 \cdot 0$ (since $\ln 1 = 0$) = 0
- 2. $f(e) = 3 \ln(e)$ = 3 · 1 (since $\ln e = 1$)

Ex 8: For $f: x \mapsto \frac{1}{1 + \ln(x)}$, find in simplest form:

- 1. $f(1) = \boxed{1}$
- $2. \ f(e) = \boxed{\frac{1}{2}}$

1.
$$f(1) = \frac{1}{1 + \ln(1)}$$

= $\frac{1}{1+0}$ (since $\ln 1 = 0$)
= 1

2.
$$f(e) = \frac{1}{1 + \ln(e)}$$

= $\frac{1}{1+1}$ (since $\ln e = 1$)
= $\frac{1}{2}$

Ex 9: For $f: x \mapsto x \ln(x+1)$, find in simplest form:

- 1. $f(0) = \boxed{0}$
- 2. $f(1) = \ln(2)$

Answer:

1.
$$f(0) = 0 \ln(0+1)$$

= $0 \cdot \ln(1)$
= $0 \cdot 0$
= 0

2.
$$f(1) = 1 \ln(1+1)$$

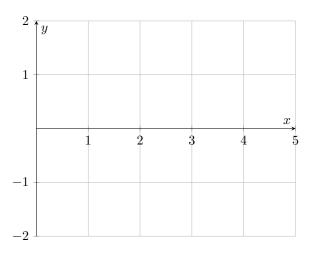
= $1 \cdot \ln(2)$
= $\ln(2)$

A.3 PLOTTING GRAPHS OF THE NATURAL LOGARITHM

Ex 10: Here is a table of values for the function $f(x) = \ln(x)$:

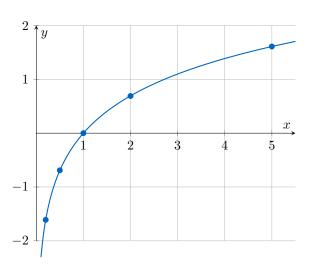
x	0.2	0.5	1	2	5
ln(x)	-1.61	-0.69	0	0.69	1.61

Plot the graph of the function.



Answer:

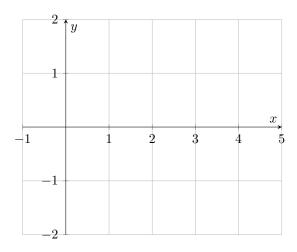
Answer:



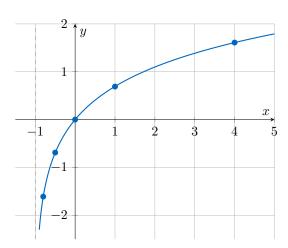
Ex 11: Here is a table of values for the function $f(x) = \ln(1+x)$:

x	-0.8	-0.5	0	1	4
$\ln(1+x)$	-1.61	-0.69	0	0.69	1.61

Plot the graph of the function.



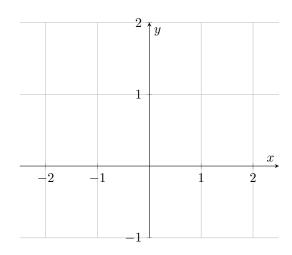
Answer:



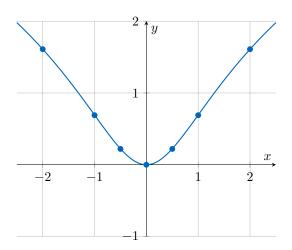
Ex 12: Here is a table of values for the function $f(x) = \ln(1 + x^2)$:

x	-2	-1	-0.5	0	0.5	1	2
$\ln(1+x^2)$	1 61	0.69	0.22	0	0.22	0.69	1.61

Plot the graph of the function.



Answer:



A.4 FINDING INVERSE FUNCTIONS

Ex 13: For $f: x \mapsto 3\ln(x)$, find the inverse function:

$$f^{-1}(x) = e^{\frac{x}{3}}$$

Answer: Let $y = 3 \ln(x)$. To find the inverse, we swap x and y and solve for y.

$$x = 3 \ln(y)$$

$$\frac{x}{3} = \ln(y)$$

$$e^{\frac{x}{3}} = e^{\ln(y)}$$

$$y = e^{\frac{x}{3}}$$

The inverse function is $f^{-1}(x) = e^{\frac{x}{3}}$.

Ex 14: For $f: x \mapsto \ln(x+2) - 3$, find the inverse function:

$$f^{-1}(x) = \boxed{e^{x+3} - 2}$$

Answer: Let $y = \ln(x+2) - 3$. To find the inverse, we swap x and y and solve for y.

$$x = \ln(y+2) - 3$$

$$x+3 = \ln(y+2)$$

$$e^{x+3} = e^{\ln(y+2)}$$

$$e^{x+3} = y+2$$

$$y = e^{x+3} - 2$$

The inverse function is $f^{-1}(x) = e^{x+3} - 2$.

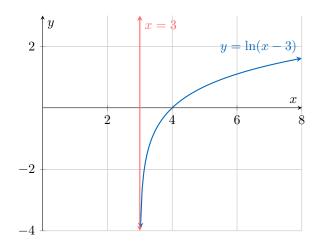
A.5 FINDING ASYMPTOTES

Ex 15: For the function $f(x) = \ln(x-3)$, find the equation of the vertical asymptote:

$$x = \boxed{3}$$

 ${\it Answer:}$ There is a ${\bf vertical}$ ${\bf asymptote}$ where the argument of the logarithm is zero

$$x - 3 = 0$$
$$x = 3$$



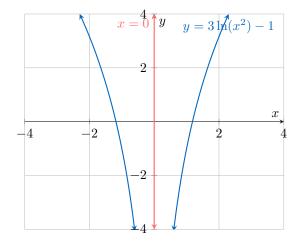
Ex 16: For the function $f(x) = 3\ln(x^2) - 1$, find the equation of the vertical asymptote:

$$x = \boxed{0}$$

 ${\it Answer:}$ There is a ${\bf vertical}$ asymptote where the argument of the logarithm is zero.

$$x^2 = 0$$

$$x = 0$$



Ex 17: For the function $f(x) = \ln(e^x - 1)$, find the equation of the vertical asymptote:

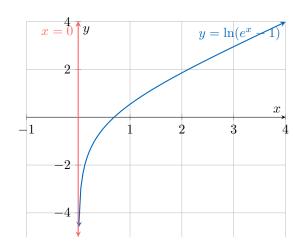
$$x = \boxed{0}$$

Answer: There is a **vertical asymptote** where the argument of the logarithm is zero.

$$e^{x} - 1 = 0$$

$$e^{x} = 1$$

$$\ln(e^{x}) = \ln(1)$$



A.6 FINDING f(g(x))

Ex 18: For the function $f(x) = e^x$ and $g(x) = \ln(x-3)$, find and simplify:

$$(f \circ g)(x) = \boxed{x - 3}$$

Answer:

$$(f \circ g)(x) = f(g(x))$$

$$= f(\ln(x-3))$$

$$= e^{\ln(x-3)}$$

$$= x - 3$$

Ex 19: For the function $f(x) = \ln(x)$ and $g(x) = x^2 + 4$, find and simplify:

$$(f \circ g)(x) = \boxed{\ln(x^2 + 4)}$$

Answer:

$$(f \circ g)(x) = f(g(x))$$
$$= f(x^2 + 4)$$
$$= \ln(x^2 + 4)$$

Ex 20: For the function $f(x) = \ln(x)$ and $g(x) = e^{2x}$, find and simplify:

$$(g \circ f)(x) = \boxed{x^2}$$

Answer:

$$(g \circ f)(x) = g(f(x))$$

$$= g(\ln(x))$$

$$= e^{2\ln(x)}$$

$$= e^{\ln(x^2)}$$

$$= x^2$$

A.7 ANALYZING LOGARITHMIC FUNCTIONS

Ex 21: For the function $f(x) = \ln(x-3)$:

- 1. Find the domain and range.
- 2. Find any asymptotes and axes intercepts.
- 3. Sketch the graph of y = f(x), showing all important features.

- 4. Solve f(x) = -1 algebraically and check the solution on your graph.
- 5. Find the inverse function f^{-1} .

Answer:

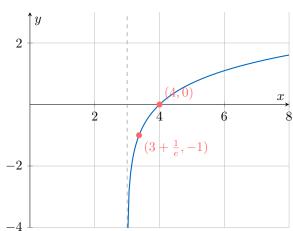
1. Domain and Range

- **Domain:** The argument of the natural logarithm must be positive. Therefore, x-3>0, which implies x>3. The domain is $(3, \infty)$.
- Range: The range of the basic logarithmic function ln(u) is all real numbers. The horizontal shift does not affect the range. The range is \mathbb{R} .

2. Asymptotes and Intercepts

- Asymptotes: There is a vertical asymptote where the argument of the logarithm is zero, which is at x = 3. There is no horizontal asymptote.
- Axes Intercepts:
 - **y-intercept:** To find the y-intercept, we set x = 0. $f(0) = \ln(0-3) = \ln(-3)$, which is undefined. There is **no y-intercept**.
 - **x-intercept:** To find the x-intercept, we set f(x) = 0. $\ln(x - 3) = 0 \implies e^0 = x - 3 \implies$ $1 = x - 3 \implies x = 4$. The x-intercept is at (4, 0).

3. Graph of the function



4. **Solve** f(x) = -1

$$\ln(x-3) = -1$$

$$e^{\ln(x-3)} = e^{-1}$$

$$x-3 = \frac{1}{e}$$

$$x = 3 + \frac{1}{e}$$

The exact solution is $x = 3 + \frac{1}{e}$. As $e \approx 2.718$, $x \approx$ 3 + 0.368 = 3.368. This point is marked on the graph, confirming that for y = -1, x is slightly greater than 3.

5. Inverse Function Let $y = \ln(x-3)$. To find the inverse, we swap x and y and solve for y.

$$x = \ln(y - 3)$$

$$e^{x} = e^{\ln(y - 3)}$$

$$e^{x} = y - 3$$

$$y = e^{x} + 3$$

The inverse function is $f^{-1}(x) = e^x + 3$.

For the function $f: x \mapsto 2 - \ln(x - 1)$:

- 1. Find the domain and range.
- 2. Find any asymptotes and axes intercepts.
- 3. Sketch the graph of y = f(x), showing all important features.
- 4. Solve f(x) = -1 algebraically and check the solution on your graph.
- 5. Find the inverse function f^{-1} .

Answer:

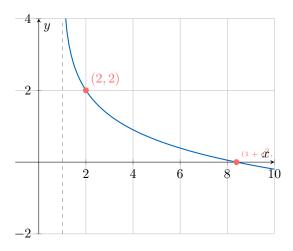
1. Domain and Range

- Domain: The argument of the natural logarithm must be positive. Therefore, x-1>0, which implies x>1. The domain is $(1, \infty)$.
- The range of ln(x-1) is \mathbb{R} . • Range: transformations (reflection and vertical shift) do not change the range. The range is \mathbb{R} .

2. Asymptotes and Intercepts

- Asymptotes: There is a vertical asymptote where the argument of the logarithm is zero, which is at x = 1.
- Axes Intercepts:
 - **y-intercept:** Set x = 0. $f(0) = 2 \ln(0 1)$ is undefined. There is no y-intercept.
 - **x-intercept:** Set f(x) = 0. $2 \ln(x 1) = 0 \implies$ $\ln(x-1) = 2 \implies x-1 = e^2 \implies x = 1 + e^2.$ The x-intercept is at $(1 + e^2, 0)$.

3. Graph of the function



4. **Solve** f(x) = -1

$$2 - \ln(x - 1) = -1$$
$$3 = \ln(x - 1)$$
$$e^3 = x - 1$$
$$x = 1 + e^3$$

The exact solution is $x = 1 + e^3$. As $e^3 \approx 20.09$, $x \approx 21.09$. This is consistent with the graph, which shows that as y becomes more negative, x increases.

5. Inverse Function Let $y = 2 - \ln(x - 1)$. Swap x and y.

$$x = 2 - \ln(y - 1)$$

$$\ln(y - 1) = 2 - x$$

$$e^{\ln(y - 1)} = e^{2 - x}$$

$$y - 1 = e^{2 - x}$$

$$y = 1 + e^{2 - x}$$

The inverse function is $f^{-1}(x) = 1 + e^{2-x}$.

Ex 23: For the function $f(x) = (\ln(x))^2$:

- 1. Find the domain and range.
- 2. Find any asymptotes and axes intercepts.
- 3. Sketch the graph of y = f(x), showing all important features.
- 4. Solve f(x) = 4 algebraically and check the solution on your graph.
- 5. Find the inverse function f^{-1} , for $x \geq 1$

Answer:

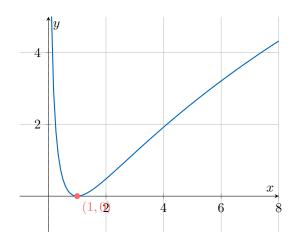
1. Domain and Range

- **Domain:** The function ln(x) is defined for x > 0. Squaring the function does not change this condition. The domain is $(0, \infty)$.
- Range: The range of $\ln(x)$ is \mathbb{R} . Since f(x) is the square of $\ln(x)$, its values must be non-negative. The range is $[0, \infty)$.

2. Asymptotes and Intercepts

- Asymptotes: As $x \to 0^+$, $\ln(x) \to -\infty$, so $(\ln(x))^2 \to \infty$. There is a **vertical asymptote** at x = 0. There is no horizontal asymptote as $f(x) \to \infty$ when $x \to \infty$.
- Axes Intercepts:
 - **y-intercept:** Set x = 0. This is not in the domain. There is **no y-intercept**.
 - **x-intercept:** Set f(x) = 0. $(\ln(x))^2 = 0 \implies \ln(x) = 0 \implies x = e^0 = 1$. The x-intercept is at (1,0). This is also the minimum point of the function.

3. Graph of the function



4. **Solve** f(x) = 4

$$(\ln(x))^2 = 4$$

$$\ln(x) = \pm \sqrt{4}$$

$$\ln(x) = 2 \quad \text{or} \quad \ln(x) = -2$$

$$x = e^2 \quad \text{or} \quad x = e^{-2}$$

The solutions are $x = e^2 \approx 7.39$ and $x = e^{-2} = \frac{1}{e^2} \approx 0.135$. Both solutions are positive and therefore valid. This is confirmed on the graph, which shows the line y = 4 intersecting the curve at two points.

5. Inverse Function Let $y = (\ln(x))^2$. Swap x and y.

$$x = (\ln(y))^{2}$$
$$\sqrt{x} = \ln(y)$$
$$e^{\sqrt{x}} = y$$

The inverse function is $f^{-1}(x) = e^{\sqrt{x}}$.

B LOGARITHMIC FUNCTION IN BASE a

B.1 DETERMINING DOMAINS OF LOGARITHMIC FUNCTIONS

MCQ 24: Find the domain of the function $f: x \mapsto \log_2(x-4)$.

- \square \mathbb{R}
- $\Box [-4, +\infty)$
- $\boxtimes (4, +\infty)$
- $\Box (-\infty,4)$

Answer: The function $f(x) = \log_2(x-4)$ is defined only when the argument of the logarithm is strictly positive, i.e., when x-4 > 0. Solving this inequality:

$$x-4>0$$

 $x>4$ (adding 4 to both sides)

Therefore, the function is defined for x > 4, so the domain is $(4, +\infty)$.

MCQ 25: Find the domain of the function $f: x \mapsto \log_5(2-x)$.

- \square \mathbb{R}
- $\Box [-2,+\infty)$
- \square $(2,+\infty)$
- $\boxtimes (-\infty, 2)$

Answer: The function $f(x) = \log_5(2-x)$ is defined only when the argument of the logarithm is strictly positive, i.e., when 2-x>0. Solving this inequality:

$$2 - x > 0$$

-x > -2 (subtracting 2 from both sides)

x < 2 (multiplying both sides by -1, reversing the inequality)

Therefore, the function is defined for x < 2, so the domain is $(-\infty, 2)$.

MCQ 26: Find the domain of the function $f: x \mapsto \log(2x-6)$.

$$\square$$
 \mathbb{R}

$$\square$$
 $[3, +\infty)$

$$\boxtimes$$
 $(3, +\infty)$

$$\Box$$
 $(-\infty,3)$

Answer: The function $f(x) = \log(2x - 6)$ is defined only when the argument of the logarithm is strictly positive, i.e., when 2x-6 >0. Solving this inequality:

$$2x - 6 > 0$$

 $2x > 6$ (adding 6 to both sides)
 $x > 3$ (dividing both sides by 2)

Therefore, the function is defined for x > 3, so the domain is **Ex 30:** For $f: x \mapsto x \log(x+1)$, find in simplest form: $(3,+\infty)$.

MCQ 27: Find the domain of the function $f: x \mapsto \log_{10}(9 -$

$$\square$$
 \mathbb{R}

$$\square$$
 $[3, +\infty)$

$$\square$$
 $(3,+\infty)$

$$\boxtimes (-\infty, 3)$$

Answer: The function $f(x) = \log_{10}(9-3x)$ is defined only when the argument of the logarithm is strictly positive, i.e., when 9-3x >0. Solving this inequality:

$$9 - 3x > 0$$

-3x > -9 (subtracting 9 from both sides)

x < 3 (dividing both sides by -3, reversing the inequality)

Therefore, the function is defined for x < 3, so the domain is $(-\infty,3)$.

B.2 CALCULATING f(x)

Ex 28: For $f: x \mapsto 3\log(x)$, find in simplest form:

1.
$$f(1) = \boxed{0}$$

2.
$$f(10) = \boxed{3}$$

Answer:

1.
$$f(1) = 3 \log(1)$$

= 3 · 0 (since $\log 1 = 0$)
= 0

2.
$$f(10) = 3 \log(10)$$

= $3 \cdot 1$ (since $\log 10 = 1$)
= 3

Ex 29: For $f: x \mapsto \frac{1}{1 + \log_2(x)}$, find in simplest form:

1.
$$f(1) = \boxed{1}$$

2.
$$f(2) = \boxed{\frac{1}{2}}$$

1.
$$f(1) = \frac{1}{1 + \log_2(1)}$$

= $\frac{1}{1+0}$ (since $\log_2 1 = 0$)

2.
$$f(2) = \frac{1}{1 + \log_2(2)}$$

= $\frac{1}{1+1}$ (since $\log_2 2^1 = 1$)
= $\frac{1}{2}$

1.
$$f(0) = \boxed{0}$$

2.
$$f(1) = \log(2)$$

Answer:

1.
$$f(0) = 0 \log(0 + 1)$$

= $0 \cdot \log(1)$
= $0 \cdot 0$
= 0

2.
$$f(1) = 1 \log(1+1)$$

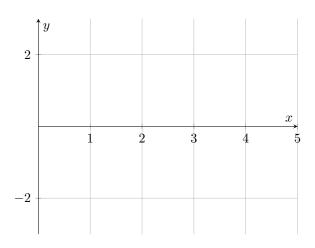
= $1 \cdot \log(2)$
= $\log(2)$

B.3 PLOTTING LOGARITHMIC GRAPHS

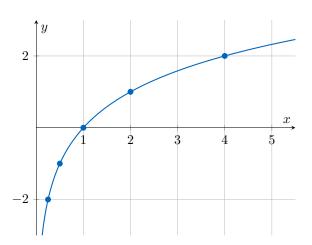
Ex 31: Here is a table of values for the function $f(x) = \log_2(x)$:

x	0.25	0.5	1	2	4
$\log_2(x)$	-2	-1	0	1	2

Plot the graph of the function.



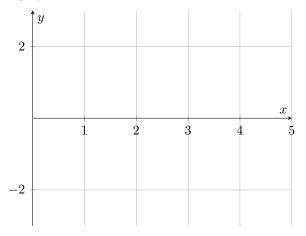
Answer:



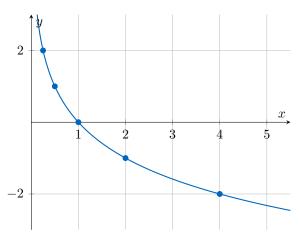
Ex 32: Here is a table of values for the function $f(x) = \log_{0.5}(x)$:

x	0.25	0.5	1	2	4
$\log_{0.5}(x)$	2	1	0	-1	-2

Plot the graph of the function.



Answer:



B.4 FINDING INVERSE FUNCTIONS

Ex 33: For $f: x \mapsto \log_2(x-1)$, find the inverse function:

$$f^{-1}(x) = 2^x + 1$$

Answer: Let $y = \log_2(x-1)$. To find the inverse, we swap x and y and solve for y.

$$x = \log_2(y - 1)$$

$$2^x = 2^{\log_2(y - 1)}$$

$$2^x = y - 1$$

$$y = 2^x + 1$$

The inverse function is $f^{-1}(x) = 2^x + 1$.

Ex 34: For $f: x \mapsto 5\log_3(2x)$, find the inverse function:

$$f^{-1}(x) = \boxed{\frac{1}{2} \cdot 3^{\frac{x}{5}}}$$

Answer: Let $y = 5 \log_3(2x)$. To find the inverse, we swap x and y and solve for y.

$$x = 5\log_3(2y)$$

$$\frac{x}{5} = \log_3(2y)$$

$$3^{\frac{x}{5}} = 2y$$

$$y = \frac{1}{2} \cdot 3^{\frac{x}{5}}$$

The inverse function is $f^{-1}(x) = \frac{1}{2} \cdot 3^{\frac{x}{5}}$.

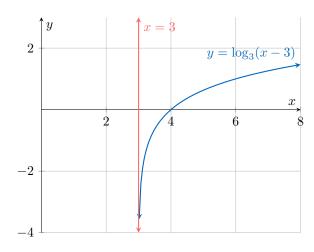
B.5 FINDING ASYMPTOTES

Ex 35: For the function $f(x) = \log_3(x-3)$, find the equation of the vertical asymptote:

$$x = \boxed{3}$$

Answer: There is a **vertical asymptote** where the argument of the logarithm is zero

$$x - 3 = 0$$
$$x = 3$$

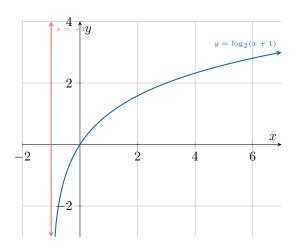


Ex 36: For the function $f(x) = \log_2(x+1)$, find the equation of the vertical asymptote:

$$x = \boxed{-1}$$

Answer: There is a **vertical asymptote** where the argument of the logarithm is zero

$$x + 1 = 0$$
$$x = -1$$



B.6 FINDING f(g(x))

Ex 37: For the function $f(x) = \log_2(x)$ and $g(x) = 4^x$, find and simplify:

$$(f \circ g)(x) = \boxed{2x}$$

Answer:

$$(f \circ g)(x) = f(g(x))$$

$$= f(4^{x})$$

$$= \log_{2}(4^{x})$$

$$= \log_{2}((2^{2})^{x})$$

$$= \log_{2}(2^{2x})$$

$$= 2x$$

Ex 38: For the function $f(x) = 2^x$ and $g(x) = \log_4(x)$, find and simplify:

$$(f \circ g)(x) = \boxed{\sqrt{x}}$$

Answer:

$$(f \circ g)(x) = f(g(x))$$

$$= f(\log_4(x))$$

$$= 2^{\log_4(x)}$$

$$= 2^{\frac{\log_2(x)}{\log_2(4)}}$$
 (Change of base formula)
$$= 2^{\frac{\log_2(x)}{2}}$$

$$= (2^{\log_2(x)})^{\frac{1}{2}}$$
 (Exponent law)
$$= x^{\frac{1}{2}}$$

$$= \sqrt{x}$$

B.7 ANALYZING LOGARITHMIC FUNCTIONS

Ex 39: For the function $f(x) = \log_2(x-3)$:

- 1. Find the domain and range.
- 2. Find any asymptotes and axes intercepts.
- 3. Sketch the graph of y = f(x), showing all important features.
- 4. Solve f(x) = -1 algebraically and check the solution on your graph.

5. Find the inverse function f^{-1} .

Answer:

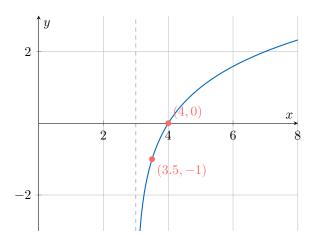
1. Domain and Range

- **Domain:** The argument of the logarithm must be positive. Therefore, x 3 > 0, which implies x > 3. The domain is $(3, \infty)$.
- Range: The range of the logarithmic function $\log_2(u)$ is all real numbers. The range is \mathbb{R} .

2. Asymptotes and Intercepts

- Asymptotes: There is a vertical asymptote at x = 3.
- Axes Intercepts:
 - **y-intercept:** For x = 0, $f(0) = \log_2(-3)$, which is undefined. There is **no y-intercept**.
 - **x-intercept:** Set f(x) = 0. $\log_2(x-3) = 0 \implies 2^0 = x-3 \implies 1 = x-3 \implies x = 4$. The x-intercept is at (4,0).

3. Graph of the function



4. Solve f(x) = -1

$$\begin{aligned} \log_2(x-3) &= -1 \\ 2^{\log_2(x-3)} &= 2^{-1} \\ x-3 &= \frac{1}{2} \\ x &= 3 + \frac{1}{2} = 3.5 \end{aligned}$$

The exact solution is x = 3.5. This is confirmed on the graph.

5. Inverse Function Let $y = \log_2(x-3)$. Swap x and y.

$$x = \log_2(y-3)$$

$$2^x = 2^{\log_2(y-3)}$$

$$2^x = y-3$$

$$y = 2^x + 3$$

The inverse function is $f^{-1}(x) = 2^x + 3$.

Ex 40: For the function $f(x) = 2 - \log_3(x - 1)$:

1. Find the domain and range.

- 2. Find any asymptotes and axes intercepts.
- 3. Sketch the graph of y = f(x), showing all important features.
- 4. Solve f(x) = -1 algebraically and check the solution on your graph.
- 5. Find the inverse function f^{-1} .

Answer:

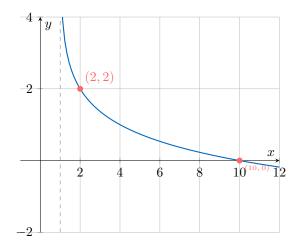
1. Domain and Range

- **Domain:** The argument of the logarithm must be positive. Therefore, x 1 > 0, which implies x > 1. The domain is $(1, \infty)$.
- Range: The range of $\log_3(x-1)$ is \mathbb{R} . The transformations do not change the range. The range is \mathbb{R} .

2. Asymptotes and Intercepts

- Asymptotes: There is a vertical asymptote at x = 1.
- Axes Intercepts:
 - **y-intercept:** For x = 0, $f(0) = 2 \log_3(-1)$, which is undefined. There is **no y-intercept**.
 - **x-intercept:** Set f(x) = 0. $2 \log_3(x 1) = 0 \implies \log_3(x 1) = 2 \implies x 1 = 3^2 \implies x = 1 + 9 = 10$. The x-intercept is at (10, 0).

3. Graph of the function



4. Solve
$$f(x) = -1$$

$$2 - \log_3(x - 1) = -1$$
$$3 = \log_3(x - 1)$$
$$3^3 = x - 1$$
$$x = 1 + 27 = 28$$

The exact solution is x = 28.

5. Inverse Function Let $y = 2 - \log_3(x - 1)$. Swap x and y.

$$x = 2 - \log_3(y - 1)$$

$$\log_3(y - 1) = 2 - x$$

$$3^{\log_3(y-1)} = 3^{2-x}$$

$$y - 1 = 3^{2-x}$$

$$y = 1 + 3^{2-x}$$

The inverse function is $f^{-1}(x) = 1 + 3^{2-x}$.