VECTOR EQUATIONS OF LINES

A VECTOR EQUATION

A.1 LOCATING POINTS ON A LINE

Ex 1: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\lambda \in \mathbb{R}$, locate the point on the line for which $\lambda = 0$.

$$A(-2,3)$$

Answer: For $\lambda = 0$:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + 0 \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

This gives the point A(-2,3).

Ex 2: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\lambda \in \mathbb{R}$, locate the point on the line for which $\lambda = 2$.

Answer: For $\lambda = 2$:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \times 2 \\ 2 \times (-1) \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

$$= \begin{pmatrix} -2+4 \\ 3-2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

This gives the point A(2,1).

Ex 3: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\lambda \in \mathbb{R}$, locate the point on the line for which $\lambda = \frac{1}{2}$.

$$A(\boxed{-1},\boxed{\frac{5}{2}})$$

Answer: For $\lambda = \frac{1}{2}$:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + 1/2 \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \times 2 \\ \frac{1}{2} \times (-1) \end{pmatrix}$$
$$= \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}$$
$$= \begin{pmatrix} -2 + 1 \\ 3 - \frac{1}{2} \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ \frac{6}{2} - \frac{1}{2} \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ \frac{5}{2} \end{pmatrix}$$

This gives the point $A(-1, \frac{5}{2})$.

Ex 4: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\lambda \in \mathbb{R}$, locate the point on the line for which $\lambda = -\frac{3}{2}$.

$$A(\boxed{-5},\boxed{\frac{9}{2}})$$

Answer: For $\lambda = -\frac{3}{2}$:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + (-3/2) \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} -\frac{3}{2} \times 2 \\ -\frac{3}{2} \times (-1) \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} -3 \\ \frac{3}{2} \end{pmatrix}$$

$$= \begin{pmatrix} -2 - 3 \\ 3 + \frac{3}{2} \end{pmatrix}$$

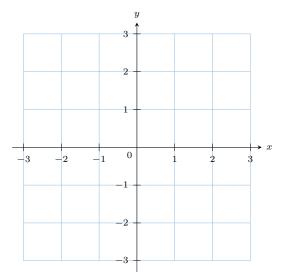
$$= \begin{pmatrix} -5 \\ \frac{6}{2} + \frac{3}{2} \end{pmatrix}$$

$$= \begin{pmatrix} -5 \\ \frac{9}{2} \end{pmatrix}$$

This gives the point $A(-5, \frac{9}{2})$.

A.2 PLOTTING A LINE FROM ITS VECTOR EQUATION

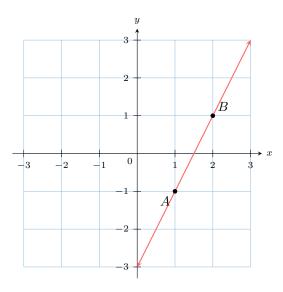
Ex 5: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\lambda \in \mathbb{R}$ plot the line.



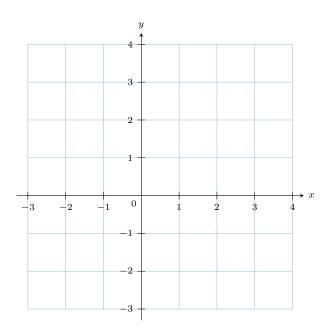
Answer: To plot the line, we can find any two distinct points on it by choosing two different values for the parameter λ .

- For $\lambda = 0$: $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. This gives the point A(1, -1).
- For $\lambda = 1$: $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + 1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. This gives the point B(2,1).

We now plot these two points and draw the unique line that passes through them.



Ex 6: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\lambda \in \mathbb{R}$, plot the line.

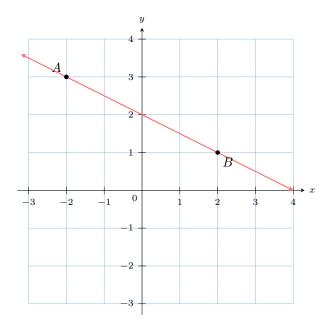


Answer: To plot the line, we can find any two distinct points on it by choosing two different values for the parameter λ .

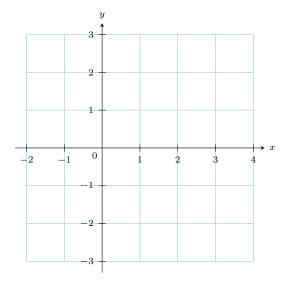
• For
$$\lambda = 0$$
: $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + 0 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$. This gives the point $A(-2,3)$.

• For
$$\lambda = 2$$
: $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2+4 \\ 3-2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. This gives the point $B(2,1)$.

We now plot these two points and draw the unique line that passes through them.



Ex 7: A line passes through the point A(1,-2) with direction vector $\overrightarrow{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Plot the point A, the direction vector originating from A, and the resulting line.

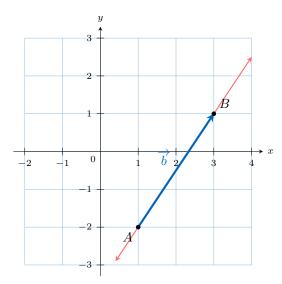


Answer: To plot the line, we start at the given point and use the direction vector to find a second point.

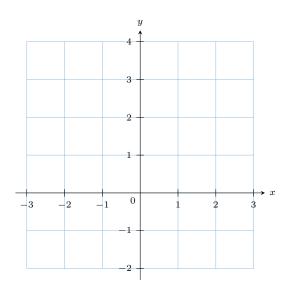
- The starting point is A(1, -2).
- The direction vector $\overrightarrow{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ tells us to move 2 units in the positive x-direction and 3 units in the positive y-direction to find another point on the line.
- Starting from A, the second point, let's call it B, will have coordinates:

$$B = (1+2, -2+3) = (3, 1)$$

We now plot point A, draw the vector from A to B, and then draw the line that passes through both points.



Ex 8: A line passes through the point A(-2,2) with direction vector $\overrightarrow{b} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$. Plot the point A, the direction vector originating from A, and the resulting line.

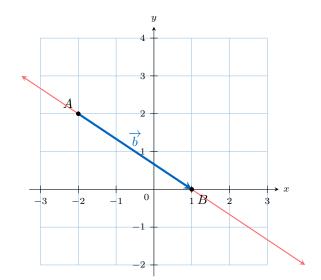


Answer: To plot the line, we start at the given point and use the direction vector to find a second point.

- The starting point is A(-2,2).
- The direction vector $\overrightarrow{b} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ tells us to move 3 units in the positive x-direction and 2 units in the negative y-direction to find another point on the line.
- Starting from A, the second point, let's call it B, will have coordinates:

$$B = (-2+3, 2-2) = (1,0)$$

We now plot point A, draw the vector from A to B, and then draw the line that passes through both points.



A.3 WRITING EQUATIONS OF LINES

Ex 9: A line in space passes through the point (1, -2, 3) in the direction $\begin{pmatrix} 4 \\ 5 \\ -6 \end{pmatrix}$.

Describe the line using a vector equation.

Answer: The vector equation is $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 5 \\ -6 \end{pmatrix}, \quad \lambda \in \mathbb{R}$$

Ex 10: A line in space passes through the points A(2, -1, 4) and B(-1, 0, 2).

Describe the line using a vector equation.

Answer

1. **Direction Vector** We can use the vector \overrightarrow{AB} .

$$\overrightarrow{b} = \overrightarrow{AB} = \begin{pmatrix} -1 - 2\\ 0 - (-1)\\ 2 - 4 \end{pmatrix} = \begin{pmatrix} -3\\ 1\\ -2 \end{pmatrix}$$

2. **Vector Equation** Using point A, the vector equation is $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 1 \\ -2 \end{pmatrix}, \quad \lambda \in \mathbb{R}$$

Ex 11: A line in a plane passes through the point A(1,4) and is perpendicular to the vector $\overrightarrow{n} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

Describe the line using a vector equation.

Answer:

1. **direction vector** The given vector \overrightarrow{n} is perpendicular to the line, which means \overrightarrow{n} is a **normal vector** to the line. The **direction vector** \overrightarrow{b} of the line must be perpendicular to \overrightarrow{n} .

For two vectors in 2D, if $\overrightarrow{n} = \begin{pmatrix} a \\ b \end{pmatrix}$, a perpendicular vector

is
$$\overrightarrow{b} = \begin{pmatrix} -b \\ a \end{pmatrix}$$
 because

$$\binom{a}{b} \cdot \binom{-b}{a} = -ab + ba = 0$$

Given $\overrightarrow{n}=\binom{2}{-1}$, a suitable direction vector is $\overrightarrow{b}=\binom{-(-1)}{2}=\binom{1}{2}$.

2. Vector Equation The vector equation is $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$.

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \lambda \in \mathbb{R}$$

B PARAMETRIC EQUATIONS

B.1 FINDING INTERSECTIONS WITH COORDINATE AXES AND PLANES

Ex 12: A line has parametric equations:

$$\begin{cases} x = -4 + 2\lambda \\ y = 9 - 3\lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

The line intersects the x-axis at point P.

- 1. What is the value of the y-coordinate at point P?
- 2. Find the value of the parameter λ at point P.
- 3. Determine the coordinates of the point of intersection P.

Answer:

- 1. Any point on the x-axis has a y-coordinate of zero. So, at point P, y=0.
- 2. We use the parametric equation for y and set it to zero to find the corresponding value of λ .

$$y = 9 - 3\lambda$$
$$0 = 9 - 3\lambda$$

$$3\lambda = 9$$

$$\lambda = 3$$

The value of the parameter at the point of intersection is $\lambda = 3$.

3. Now we substitute $\lambda=3$ into the parametric equation for x to find the x-coordinate of P.

$$x = -4 + 2(3) = -4 + 6 = 2$$

The coordinates of the point of intersection are P(2,0).

Ex 13: A line has parametric equations:

$$\begin{cases} x = 5 + \lambda \\ y = 1 - 2\lambda \\ z = -3 + 4\lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

The line intersects the YZ-plane at point Q.

- 1. What is the value of the x-coordinate at point Q?
- 2. Find the value of the parameter λ at point Q.
- 3. Determine the coordinates of the point of intersection Q.

1. Any point on the YZ-plane has an x-coordinate of zero. So, at point Q, x=0.

2. We use the parametric equation for x and set it to zero to find the corresponding value of λ .

$$x = 5 + \lambda$$

$$0 = 5 + \lambda$$

$$\lambda = -5$$

The value of the parameter at the point of intersection is $\lambda = -5$.

3. Now we substitute $\lambda = -5$ into the parametric equations for y and z to find the coordinates of Q.

$$y = 1 - 2(-5) = 1 + 10 = 11$$

$$z = -3 + 4(-5) = -3 - 20 = -23$$

The coordinates of the point of intersection are Q(0, 11, -23).

Ex 14: A line has parametric equations:

$$\begin{cases} x = 7 - 2\lambda \\ y = -4 + 3\lambda \\ z = 10 - 5\lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

The line intersects the XY-plane at point R.

- 1. What is the value of the z-coordinate at point R?
- 2. Find the value of the parameter λ at point R.
- 3. Determine the coordinates of the point of intersection R.

Answer:

- 1. Any point on the XY-plane has a z-coordinate of zero. So, at point R, z = 0.
- 2. We use the parametric equation for z and set it to zero to find the corresponding value of λ .

$$z = 10 - 5\lambda$$

$$0 = 10 - 5\lambda$$

$$5\lambda = 10$$

$$\lambda = 2$$

The value of the parameter at the point of intersection is $\lambda = 2$.

3. Now we substitute $\lambda = 2$ into the parametric equations for x and y to find the coordinates of R.

$$x = 7 - 2(2) = 7 - 4 = 3$$

$$y = -4 + 3(2) = -4 + 6 = 2$$

The coordinates of the point of intersection are R(3, 2, 0).

B.2 VERIFYING IF A POINT LIES ON A LINE

Ex 15: A line is defined by the parametric equations:

$$\begin{cases} x = 2 - t \\ y = 3 + 2t \end{cases}, \quad t \in \mathbb{R}$$

Determine if the point Q(-1,9) lies on the line.

Answer: To determine if the point Q lies on the line, we substitute its coordinates (x = -1, y = 9) into the parametric equations and solve for the parameter t. The point is on the line if there is a consistent value of t for both equations.

• For the x-coordinate:

$$-1 = 2 - t$$
$$t = 2 - (-1)$$
$$t = 3$$

• For the y-coordinate:

$$9 = 3 + 2t$$
$$6 = 2t$$
$$t = 3$$

Since we obtain the same value, t = 3, for both equations, the point Q(-1,9) does lie on the line.

Ex 16: A line is defined by the parametric equations:

$$\begin{cases} x = 4 - 2t \\ y = 1 + 3t \end{cases}, \quad t \in \mathbb{R}$$

Determine if the point P(2,5) lies on the line.

Answer: To determine if the point P lies on the line, we substitute its coordinates (x = 2, y = 5) into the parametric equations and check if we get a consistent value for the parameter t.

• For the x-coordinate:

$$2 = 4 - 2t$$
$$2t = 4 - 2$$
$$2t = 2$$
$$t = 1$$

• For the y-coordinate:

$$5 = 1 + 3t$$
$$4 = 3t$$
$$t = \frac{4}{2}$$

The value of t from the x-coordinate (t=1) is different from the value of t from the y-coordinate $(t=\frac{4}{3})$. Since there is no single value of t that satisfies both equations, the point P(2,5) does not lie on the line.

Ex 17: A line is defined by the parametric equations:

$$\begin{cases} x = 1 + 2t \\ y = 5 - t \end{cases}, \quad t \in \mathbb{R}$$

$$z = -2 + 4t$$

Determine if the point P(5,3,6) lies on the line.

Answer: To determine if the point P lies on the line, we substitute its coordinates (x = 5, y = 3, z = 6) into the parametric equations and solve for the parameter t. The point is on the line if and only if there is a single, consistent value of t that satisfies all three equations.

• For the x-coordinate:

$$5 = 1 + 2t$$
$$4 = 2t$$
$$t = 2$$

• For the y-coordinate:

$$3 = 5 - t$$
$$t = 5 - 3$$
$$t = 2$$

• For the z-coordinate:

$$6 = -2 + 4t$$
$$8 = 4t$$
$$t = 2$$

Since we obtain the same value, t = 2, for all three equations, the point P(5,3,6) does lie on the line.

C CARTESIAN EQUATION IN PLANE

C.1 FINDING THE NORMAL VECTOR FROM A CARTESIAN EQUATION

Ex 18: State the normal vector for the line with equation 2x - 5y = 8.

$$\overrightarrow{n} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$

Answer: For a line with the Cartesian equation ax + by = C, the normal vector is $\overrightarrow{n} = \begin{pmatrix} a \\ b \end{pmatrix}$. By comparing 2x - 5y = 8 to the general form, we can identify a = 2 and b = -5. Therefore, the normal vector is $\overrightarrow{n} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$.

Ex 19: State the normal vector for the line with equation y = 4x - 1.

$$\overrightarrow{n} = \begin{pmatrix} \boxed{-4} \\ 1 \end{pmatrix}$$

Answer: We first need to write the equation in the general form ax + by = C.

$$y = 4x - 1$$
$$-4x + y = -1$$

Therefore, the normal vector is $\overrightarrow{n} = \begin{pmatrix} -4\\1 \end{pmatrix}$.

Ex 20: State the normal vector for the line with equation $y = -\frac{2}{3}x + 5$.

$$\overrightarrow{n} = \begin{pmatrix} \boxed{2} \\ 3 \end{pmatrix}$$

Answer: We first need to write the equation in the general form ax + by = C.

$$y = -\frac{2}{3}x + 5$$
$$3y = -2x + 15$$
$$2x + 3y = 15$$

By comparing this to the general form, we can identify a=2 and b=3. Therefore, a normal vector is $\overrightarrow{n}=\begin{pmatrix} 2\\3 \end{pmatrix}$.

C.2 USING THE NORMAL VECTOR TO FIND THE CARTESIAN EQUATION

Ex 21: Find the Cartesian equation of the line that passes through the point P(-3,5) and has a normal vector of $\overrightarrow{n} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

Answer: The Cartesian equation of a line with normal vector $\overrightarrow{n} = \begin{pmatrix} a \\ b \end{pmatrix}$ is ax + by = C.

1. Use the normal vector With $\overrightarrow{n} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, the equation of the line is of the form:

$$1x - 2y = C \quad \text{or} \quad x - 2y = C$$

2. Use the point to find C The line passes through the point P(-3,5). We substitute x=-3 and y=5:

$$(-3) - 2(5) = C$$

 $-3 - 10 = C$
 $-13 = C$

The Cartesian equation of the line is x - 2y = -13.

Ex 22: Find the Cartesian equation of the line that passes through the point P(1,2) and has a normal vector of $\overrightarrow{n} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

Answer: The Cartesian equation of a line with normal vector $\overrightarrow{n} = \begin{pmatrix} a \\ b \end{pmatrix}$ is ax + by = C.

1. Use the normal vector With $\overrightarrow{n} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, the equation of the line is of the form:

$$3x + 4y = C$$

2. Use the point to find C The line passes through the point P(1,2). Therefore, the coordinates of P must satisfy the equation. We substitute x=1 and y=2:

$$3(1) + 4(2) = C$$
$$3 + 8 = C$$
$$11 = C$$

The Cartesian equation of the line is 3x + 4y = 11.