VECTOR EQUATIONS OF LINES

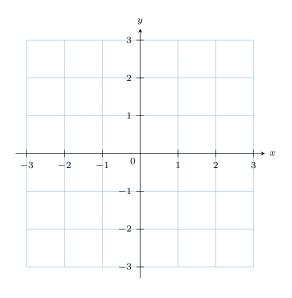
A VECTOR EQUATION

A.1 LOCATING POINTS ON A LINE

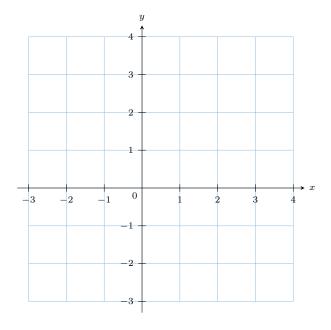
Ex 1: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\lambda \in \mathbb{R}$, locate the point on the line for which $\lambda = 0$.

$$A($$
____,__)

Ex 2: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\lambda \in \mathbb{R}$, locate the point on the line for which $\lambda = 2$.

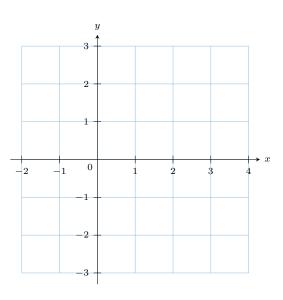

Ex 3: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\lambda \in \mathbb{R}$, locate the point on the line for which $\lambda = \frac{1}{2}$.

$$A(\boxed{},\boxed{})$$


Ex 4: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\lambda \in \mathbb{R}$, locate the point on the line for which $\lambda = -\frac{3}{2}$.

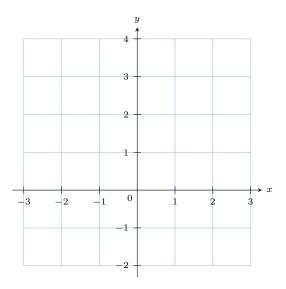
A.2 PLOTTING A LINE FROM ITS VECTOR EQUATION

Ex 5: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \lambda \in \mathbb{R},$ plot the line.



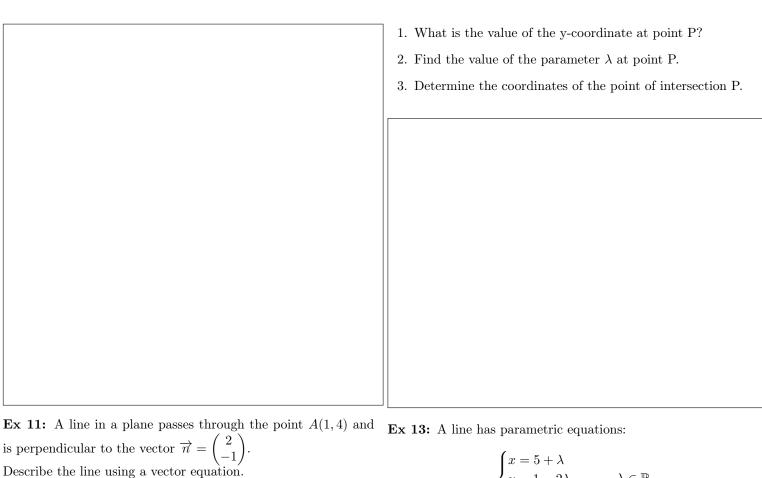
Ex 6: For the vector equation, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\lambda \in \mathbb{R}$, plot the line.

Ex 7: A line passes through the point A(1,-2) with direction vector $\overrightarrow{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Plot the point A, the direction vector originating from A, and the resulting line.



A.3 WRITING EQUATIONS OF LINES

Ex 9: A line in space passes through the point (1, -2, 3) in the direction $\begin{pmatrix} 4 \\ 5 \\ -6 \end{pmatrix}$.


Describe the line using a vector equation.

Ex 8: A line passes through the point A(-2,2) with direction vector $\overrightarrow{b} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$. Plot the point A, the direction vector originating from A, and the resulting line.

Ex 10: A line in space passes through the points A(2, -1, 4) and B(-1, 0, 2).

Describe the line using a vector equation.

B PARAMETRIC EQUATIONS

B.1 FINDING INTERSECTIONS WITH COORDINATE AXES AND PLANES

Ex 12: A line has parametric equations:

$$\begin{cases} x = -4 + 2\lambda \\ y = 9 - 3\lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

The line intersects the x-axis at point P.

$$\begin{cases} x = 5 + \lambda \\ y = 1 - 2\lambda \\ z = -3 + 4\lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

The line intersects the YZ-plane at point Q.

- 1. What is the value of the x-coordinate at point Q?
- 2. Find the value of the parameter λ at point Q.
- 3. Determine the coordinates of the point of intersection Q.

Ex 14: A line has parametric equations:

$$\begin{cases} x = 7 - 2\lambda \\ y = -4 + 3\lambda \\ z = 10 - 5\lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

The line intersects the XY-plane at point R.

1	What	is	the	value	of	the	z-coordinate	at	point	R?
т.	VV II COU	10	ULIC	varuc	$O_{\rm I}$	ULIC	z-coordinate	au	pomi	10:

2. Find the value of the parameter λ at point R.

3.	Determine	the	coordinates	of	the:	point	of	intersection	R.
,.	Doublining	ULLU	COOLGINACOS	$O_{\rm I}$	ULIC	DOILL	$O_{\mathbf{I}}$	111001000011011	T (-

B.2 VERIFYING IF A POINT LIES ON A LINE

Ex 15: A line is defined by the parametric equations:

$$\begin{cases} x = 2 - t \\ y = 3 + 2t \end{cases}, \quad t \in \mathbb{R}$$

Determine if the point Q(-1,9) lies on the line.

Ex 16: A line is defined by the parametric equations:

$$\begin{cases} x = 4 - 2t \\ y = 1 + 3t \end{cases}, \quad t \in \mathbb{R}$$

Determine if the point P(2,5) lies on the line.

Ex 17: A line is defined by the parametric equations:

$$\begin{cases} x=1+2t\\ y=5-t\\ z=-2+4t \end{cases},\quad t\in\mathbb{R}$$

Determine if the point P(5,3,6) lies on the line.

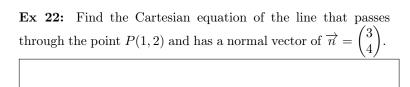
C CARTESIAN EQUATION IN PLANE

C.1 FINDING THE NORMAL VECTOR FROM A CARTESIAN EQUATION

Ex 18: State the normal vector for the line with equation 2x - 5y = 8.

$$\overrightarrow{n} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Ex 19: State the normal vector for the line with equation y = 4x - 1.


$$\overrightarrow{n} = \begin{pmatrix} \boxed{1} \end{pmatrix}$$

Ex 20: State the normal vector for the line with equation $y = -\frac{2}{3}x + 5$.

$$\overrightarrow{n} = \begin{pmatrix} \square \\ 3 \end{pmatrix}$$

C.2 USING THE NORMAL VECTOR TO FIND THE CARTESIAN EQUATION

Ex 21: Find the Cartesian equation of the line that passes through the point P(-3,5) and has a normal vector of $\overrightarrow{n} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

