LINE EQUATIONS

A SLOPES

 ${\bf Definition} \ {\bf Slope}$

The slope (or gradient) of a line is defined as the ratio of the change in the vertical direction (Δy) to the change in the horizontal direction (Δx) :

$$\mathrm{slope} = \frac{\Delta y}{\Delta x} = \frac{\mathrm{vertical\ change}}{\mathrm{horizontal\ change}}$$

 $\mathbf{E}\mathbf{x}$:

Find the slope of the line.

Answer:

•

slope =
$$\frac{\Delta y}{\Delta x}$$

= $\frac{2}{1}$
= 2

B SLOPE FORMULA

Proposition Slope Formula

The slope of a line through $A\left(x_A,y_A\right)$ and $B\left(x_B,y_B\right)$ is

slope =
$$\frac{y_B - y_A}{x_B - x_A}$$

Ex: Find the slope of the line \overrightarrow{AB} for A(1,2) and B(5,4).

Answer:

slope of
$$\overrightarrow{AB} = \frac{y_B - y_A}{x_B - x_A}$$

$$= \frac{4 - 2}{5 - 1}$$

$$= \frac{2}{4}$$

$$= \frac{1}{2}$$

C y-INTERCEPT

Definition y-Intercept -

The *y*-intercept is the value of *y* where the graph crosses the *y*-axis (when x = 0).

Ex: Find the y-intercept.

Answer:

• The y-intercept is 1 because the graph crosses the y-axis at the point (0,1).

D LINE EQUATIONS

Definition Equation of a line -

The equation of a line can be written as:

$$y = mx + c$$

where m is the **slope** and c is the y-intercept.

Ex:

E GRAPHING LINE EQUATIONS

Method Graphing a Line Using Two Points

To graph a line given by y = mx + c:

- 1. Find the first point (x_1, y_1) :
 - Choose any value for x_1 .
 - Substitute x_1 into the equation to calculate y_1 .
- 2. Find a second point (x_2, y_2) :
 - Choose a different value for x_2 .
 - Substitute x_2 into the equation to calculate y_2 .
- 3. Draw the line:

• Plot both points on a graph.

• Use a ruler to draw a straight line passing through both points.

Ex: Graph the line y = -2x + 3.

Answer:

• For x = 1,

$$y = -2 \times 1 + 3$$
$$= 1$$

• For x=2,

$$y = -2 \times 2 + 3$$
$$= -1$$

• So, the points (1,1) and (2,-1) are on the graph.

Method Graphing a Line Using the y-Intercept and Slope

To graph a line y = mx + c:

1. Plot the *y*-intercept:

• Mark the point (0, c) on the graph.

2. Use the slope m to find a second point:

- From (0, c), move horizontally by Δx .
- Then move vertically by $\Delta y = m \cdot \Delta x$.
- Mark the second point.
- 3. Draw the line:
 - Draw a straight line passing through both points.

Ex: Graph the line y = 2x - 1.

Answer:

- The y-intercept is -1, so plot the point (0, -1).
- The slope is 2: from (0, -1), move 1 unit right $(\Delta x = 1)$, then 2 units up $(\Delta y = 2)$, to reach (1, 1).
- Draw the line through these two points.

(±

