LINE EQUATIONS

A SLOPES

A.1 FINDING SLOPES OF LINES

Ex 1:

Find the slope of the line:

$$\operatorname{slope} = \boxed{1}$$

Answer:

slope = $\frac{\Delta y}{\Delta x}$ = $\frac{2}{2}$ = 1

Ex 2:

Find the slope of the line:

slope =
$$\boxed{-2}$$

Answer:

slope = $\frac{\Delta y}{\Delta x}$ = $\frac{-2}{1}$ = -2

Ex 3:

Find the slope of the line:

$$\mathrm{slope} = \boxed{3}$$

Answer:

•

slope =
$$\frac{\Delta y}{\Delta x}$$

= $\frac{3}{1}$
= 3

Ex 4:

Find the slope of the line:

$$slope = \boxed{\frac{1}{2}}$$

Answer:

slope = $\frac{\Delta y}{\Delta x}$ = $\frac{1}{2}$

Ex 5:

Find the slope of the line:

$$\mathrm{slope} = \boxed{\frac{3}{4}}$$

Answer:

slope = $\frac{\Delta y}{\Delta x}$ = $\frac{3}{4}$

Ex 6:

Find the slope of the line:

slope =
$$-\frac{2}{3}$$

Answer:

•

slope =
$$\frac{\Delta y}{\Delta x}$$

= $\frac{-2}{3}$
= $-\frac{2}{3}$

A.2 INTERPRETING SLOPE IN CONTEXT

Ex 7:

Find the slope of the road:

$$\mathrm{slope} = \boxed{\frac{1}{4}}$$

Answer:

slope =
$$\frac{\Delta y}{\Delta x}$$

= $\frac{1}{4}$

Ex 8:

Find the slope of the road:

$$slope = \boxed{-1}$$

Answer:

slope =
$$\frac{\Delta y}{\Delta x}$$

= $\frac{-3}{3}$ (vertical change is downward, so negative)
= -1

Ex 9:

Find the slope of the roof:

$$slope = \boxed{rac{1}{4}}$$

Answer:

slope =
$$\frac{\Delta y}{\Delta x}$$

= $\frac{3}{12}$
= $\frac{1}{4}$

MCQ 10: You are following a trail through the mountains from point A to point E, traveling from left to right.

Identify the steepest upward segment.

- $\Box \overline{AB}$
- $\Box \overline{BC}$
- $\boxtimes \overline{CD}$
- $\Box \overline{DE}$

Answer:

• An upward segment corresponds to a positive slope. There are two positive slopes: \overline{AB} and \overline{CD} .

slope of
$$\overline{AB} = \frac{1}{2}$$

slope of $\overline{CD} = \frac{2}{3}$

• Since $\frac{2}{3} > \frac{1}{2}$, the steepest positive slope is along segment \overline{CD} .

MCQ 11: You are following a trail through the mountains from point A to point E, traveling from left to right.

Identify the steepest downward segment.

- $\Box \overline{AB}$
- $\boxtimes \overline{BC}$
- $\Box \overline{CD}$

• A downward segment corresponds to a negative slope. There are two negative slopes: \overline{BC} and \overline{DE} .

slope of
$$\overline{BC} = \frac{-2}{2}$$

$$= -1$$
slope of $\overline{DE} = \frac{-2}{3}$

$$= -\frac{2}{3}$$

• Since $-1 < -\frac{2}{3}$, the steepest negative slope is along segment \overline{BC} .

B SLOPE FORMULA

B.1 CALCULATING THE SLOPE

Ex 12: For A(1, 2) and B(5, 4), find the slope of the line \overrightarrow{AB} .

Slope of
$$\overrightarrow{AB} = \boxed{\frac{1}{2}}$$

Answer:

slope of
$$\overrightarrow{AB} = \frac{y_B - y_A}{x_B - x_A}$$

$$= \frac{4 - 2}{5 - 1}$$

$$= \frac{2}{4}$$

$$= \frac{1}{2}$$

Ex 13: For A(3, 0) and B(4, 4), find the slope of the line \overleftrightarrow{AB} .

Slope of
$$\overrightarrow{AB} = \boxed{4}$$

slope of
$$\overrightarrow{AB} = \frac{y_B - y_A}{x_B - x_A}$$

$$= \frac{4 - 0}{4 - 3}$$

$$= \frac{4}{1}$$

$$= 4$$

Ex 14: For A(-1, 3) and B(2, -1), find the slope of the line \overrightarrow{AB} .

Slope of
$$\overleftrightarrow{AB} = \boxed{-\frac{4}{3}}$$

Answer:

slope of
$$\overrightarrow{AB} = \frac{y_B - y_A}{x_B - x_A}$$

$$= \frac{-1 - 3}{2 - (-1)}$$

$$= \frac{-4}{3}$$

$$= -\frac{4}{3}$$

Ex 15: For C(3, 1) and D(1, 3), find the slope of the line \overleftrightarrow{CD} . Answer:

Slope of
$$\overleftarrow{CD} = \boxed{-1}$$

Answer:

slope of
$$\overrightarrow{CD} = \frac{y_B - y_A}{x_B - x_A}$$

$$= \frac{3 - 1}{1 - 3}$$

$$= \frac{2}{-2}$$

$$= -1$$

${f C}$ y-INTERCEPT

C.1 FINDING THE y-INTERCEPT

Ex 16:

Ex 18:

Answer:

Answer:

Ex 17:

Ex 19:

D LINE EQUATIONS

D.1 COMPLETING A TABLE OF VALUES

Ex 20: For y = x + 3, fill in the table:

\boldsymbol{x}	-2	-1	0	1	2
y	1	2	3	$\boxed{4}$	5

Answer:

• For x = -2,

$$y = (-2) + 3$$
$$= 1$$

• For x = -1,

$$y = (-1) + 3$$
$$= 2$$

• For x = 0,

$$y = 0 + 3$$
$$= 3$$

• For x = 1,

$$y = 1 + 3$$
$$= 4$$

• For x = 2,

$$y = 2 + 3$$
$$= 5$$

So the completed table is:

x	-2	-1	0	1	2
y	1	2	3	4	5

Ex 21: For y = -2x + 1, fill in the table:

x	-2	-1	0	1	2
y	5	3	1	-1	-3

Answer:

• For
$$x = -2$$
,

$$y = -2 \times (-2) + 1$$

= 4 + 1
= 5

• For x = -1,

$$y = -2 \times (-1) + 1$$

= 2 + 1
= 3

• For x = 0,

$$y = -2 \times 0 + 1$$

= 0 + 1
= 1

• For x = 1,

$$y = -2 \times 1 + 1$$

= -2 + 1
= -1

• For x=2,

$$y = -2 \times 2 + 1$$
$$= -4 + 1$$
$$= -3$$

So the completed table is:

x	-2	-1	0	1	2
y	5	3	1	-1	-3

Ex 22: For y = 3x - 5, fill in the table:

\boldsymbol{x}	-2	-1	0	1	2
y	-11	-8	-5	-2	1

Answer:

• For x = -2,

$$y = 3 \times (-2) - 5$$

= -6 - 5
= -11

• For x = -1,

$$y = 3 \times (-1) - 5$$

= -3 - 5
= -8

• For x = 0,

$$y = 3 \times 0 - 5$$
$$= 0 - 5$$
$$= -5$$

• For x = 1,

$$y = 3 \times 1 - 5$$
$$= 3 - 5$$
$$= -2$$

• For x=2,

$$y = 3 \times 2 - 5$$
$$= 6 - 5$$
$$= 1$$

So the completed table is:

x	-2	-1	0	1	2
y	-11	-8	-5	-2	1

Ex 23: For y = -2.5x - 2, fill in the table:

x	-2	-1	0	1	2
y	3	0.5	-2	-4.5	-7

Answer:

$$\bullet$$
 For $x=-2,$
$$y=-2.5\times(-2)-2$$

$$=5-2$$

$$=3$$

• For
$$x = -1$$
,
$$y = -2.5 \times (-1) - 2$$

$$= 2.5 - 2$$

$$= 0.5$$

$$\bullet$$
 For $x=0,$
$$y=-2.5\times 0-2$$

$$=0-2$$

$$=-2$$

• For
$$x = 1$$
,
$$y = -2.5 \times 1 - 2$$

$$= -2.5 - 2$$

$$= -4.5$$

$$\bullet$$
 For $x=2,$
$$y=-2.5\times 2-2$$

$$=-5-2$$

$$=-7$$

So the completed table is:

x	-2	-1	0	1	2
y	3	0.5	-2	-4.5	-7

Ex 24: For y = 0.5x + 1, fill in the table:

\overline{x}	-2	-1	0	1	2
y	0	0.5	1	1.5	2

Answer:

• For
$$x = -2$$
,
$$y = 0.5 \times (-2) + 1$$
$$= -1 + 1$$
$$= 0$$

• For
$$x = -1$$
,
$$y = 0.5 \times (-1) + 1$$

$$= -0.5 + 1$$

$$= 0.5$$

$$\bullet$$
 For $x=1,$
$$y=0.5\times 1+1$$

$$=0.5+1$$

$$=1.5$$

So the completed table is:

\boldsymbol{x}	-2	-1	0	1	2
y	0	0.5	1	1.5	2

D.2 GRAPHING A LINE FROM TWO POINTS

Ex 25: Here is a table of values for the line equation y = x - 1:

\boldsymbol{x}	0	2
y	-1	1

Plot the line.

Answer: Plot the points (0,-1) and (2,1). Then, draw the line passing through the two points.

Ex 26: Here is a table of values for the line equation y = 0.5x + 1:

x	0	2
y	1	2

Plot the line.

Answer: Plot the points (0,1) and (2,2). Then, draw the line passing through the two points.

Ex 27: Here is a table of values for the line equation y = -2x+2:

x	0	2
y	2	-2

Plot the line.

Answer: Plot the points (0,2) and (2,-2). Then, draw the line passing through the two points.

D.3 FINDING COORDINATE POINTS

Ex 28: Find the coordinates of the point A on the line with the equation y = 2x + 1:

$$A(1, \boxed{3})$$

Answer:

• For x = 1,

$$y = 2 \times 1 + 1$$

$$= 3$$

• The coordinates of A are A(1, 3).

Ex 29: Find the coordinates of the point A on the line with the equation y = -x + 2:

$$A(1.5, \boxed{0.5})$$

Answer:

• For x = 1.5,

$$y = -1.5 + 2$$
$$= 0.5$$

• The coordinates of A are A(1.5, 0.5).

Ex 30: Find the coordinates of the point A on the line with the equation y = -2x + 1:

$$A(-1, 3)$$

• For x = -1,

$$y = -2 \times -1 + 1$$
$$= 3$$

• The coordinates of A are A(-1, 3).

D.4 DETERMINING WHETHER A POINT IS ON A LINE

MCQ 31: Determine whether the point (3,6) lies on the line with the equation y = 2x + 1.

- \square Yes
- ⊠ No

Answer:

• For x = 3 in the equation y = 2x + 1:

$$y = 2 \times 3 + 1$$
$$= 7 \neq 6$$

• Therefore, the point (3, 6) does **not** lie on the line.

MCQ 32: Determine whether the point (4, -3) lies on the line with the equation y = -2x + 5.

- ⊠ Yes
- \square No

Answer:

• For x = 4 in the equation y = -2x + 5:

$$y = -2 \times 4 + 5$$
$$= -8 + 5$$
$$= -3$$

• Therefore, the point (4, -3) does lie on the line.

MCQ 33: Determine whether the point (2,2) lies on the line with the equation y = x - 1.

- ☐ Yes
- ⊠ No

Answer:

• For x = 2 in the equation y = x - 1:

$$y = 2 - 1$$
$$= 1 \neq 2$$

• Therefore, the point (2, 2) does **not** lie on the line.

MCQ 34: Determine whether the point (0, -2) lies on the line with the equation y = 3x - 2.

- ⊠ Yes
- □ No

Answer:

• For x = 0 in the equation y = 3x - 2:

$$y = 3 \times 0 - 2$$
$$= 0 - 2$$
$$= -2$$

• Therefore, the point (0, -2) does lie on the line.

E GRAPHING LINE EQUATIONS

E.1 MATCHING EQUATIONS AND GRAPHS

MCQ 35: Choose the graph corresponding to the line with the equation y = 2x + 1.

• y-Intercept and Slope Method:

- The y-intercept is 1, so plot the point (0,1).
- The slope is 2. From (0,1), move 1 unit right $(\Delta x = 1)$, then 2 units up $(\Delta y = 2)$, to reach (1,3).
- Draw the line through these points. This matches the second graph.

• Two Points Method:

- Choose two values for x (e.g., x = 0 and x = 1).
- When x = 0, $y = 2 \times 0 + 1 = 1 \rightarrow \text{point } (0, 1)$.
- When x = 1, $y = 2 \times 1 + 1 = 3 \rightarrow \text{point } (1,3)$.
- The correct graph passes through both these points, which is the **second graph**.

MCQ 36: Choose the graph corresponding to the line with the equation y = -x + 2.

Answer: There are two methods to recognize the correct graph:

• 1. y-Intercept and Slope Method:

- The y-intercept is 2, so plot the point (0, 2).
- The slope is -1: from (0,2), move 1 unit right $(\Delta x = 1)$, then 1 unit down $(\Delta y = -1)$, reaching (1,1).
- Draw the line through these points. This matches the first graph.

• 2. Two Points Method:

- Choose two values for x (e.g., x = 0 and x = 1).
- When x = 0, $y = -0 + 2 = 2 \rightarrow \text{point } (0, 2)$.
- When x = 1, y = -1 + 2 = 1 point (1, 1).
- The correct graph passes through both these points, which is the first graph.

MCQ 37: Choose the graph corresponding to the line with the equation y = 0.5x - 1.

- The y-intercept is -1: plot the point (0, -1).
- The slope is 0.5 (or $\frac{1}{2}$): from (0,-1), move 1 unit right $(\Delta x = 1)$, and 0.5 units up $(\Delta y = 0.5)$, reaching (1,-0.5).
- Draw the line through these points. This matches the third graph.

• 2. Two Points Method:

- Choose two values for x (e.g., x = 0 and x = 2).
- When x = 0, $y = 0.5 \times 0 1 = -1$ point (0, -1).
- When x = 2, $y = 0.5 \times 2 1 = 1 1 = 0 \rightarrow \text{point } (2, 0)$.
- The correct graph passes through (0,-1) and (2,0), which is the **third graph**.

E.2 PLOTTING LINES FROM EQUATIONS

Ex 38: Plot the line equation y = 2x - 1:

Answer:

• y-Intercept and Slope Method:

- The y-intercept is -1, so plot the point (0, -1).
- The slope is 2. From (0, -1), move 1 unit right $(\Delta x = 1)$, then 2 units up $(\Delta y = 2)$, to reach (1, 1).

• Two Points Method:

- Choose two values for x (e.g., x = 0 and x = 2).
- When x = 0, $y = 2 \times 0 1 = -1 \rightarrow \text{point } (0, -1)$.
- When x = 2, $y = 2 \times 2 1 = 4 1 = 3 \rightarrow \text{point } (2,3)$.

Ex 39: Plot the line equation y = -x + 3:

• y-Intercept and Slope Method:

- The y-intercept is 3, so plot the point (0,3).
- The slope is -1. From (0,3), move 1 unit right $(\Delta x = 1)$, then 1 unit down $(\Delta y = -1)$, to reach (1,2).

• Two Points Method:

- Choose two values for x (e.g., x = 0 and x = 2).
- When x = 0, y = -0 + 3 = 3 point (0,3).
- When x = 2, y = -2 + 3 = 1 point (2, 1).

Ex 40: Plot the line equation y = -0.5x + 2:

Answer:

• y-Intercept and Slope Method:

- The y-intercept is 2: plot the point (0,2).
- The slope is -0.5 (or $-\frac{1}{2}$): from (0,2), move 1 units right $(\Delta x=1)$, then 0.5 unit down $(\Delta y=-0.5)$, to reach (1,1.5).

• Two Points Method:

- Choose two values for x (e.g., x = 0 and x = 4).
- When x = 0, $y = -0.5 \times 0 + 2 = 2 \rightarrow \text{point } (0, 2)$.
- When x = 4, $y = -0.5 \times 4 + 2 = -2 + 2 = 0 \rightarrow \text{point}$ (4,0).

