
A DEFINITION

A.1 INVESTIGATING LIMITS NUMERICALLY

x		_	$\frac{x^2}{x}$	_ _ _]	1	
1.1						
1.01						
1.001	I					
1.0001						

Hence conjecture:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \square$$

Complete the table of values below (round to 5 Ex 10: Evaluate: decimal places where needed).

h	$\frac{(1+h)^3-1}{h}$					
0.1						
0.01						
0.001						
-0.01						

Hence conjecture:

Complete the table of values below, ensuring your calculator is in radian mode (round to 5 decimal places).

x	$\frac{\sin(x)}{x}$
0.1	
0.01	
-0.01	

Hence conjecture:

LIMITS BY DIRECT **A.2 EVALUATING SUBSTITUTION**

Ex 4: Evaluate:

$$\lim_{x\to 2} x^2 = \boxed{}$$

Ex 5: Evaluate:

$$\lim_{x \to 2} (x^2 - 3x + 1) = \boxed{}$$

Ex 6: Evaluate:

$$\lim_{x\to 5} 7 = \square$$

Ex 7: Evaluate:

$$\lim_{x \to 1} \frac{x+3}{x+1} = \square$$

EVALUATING BY **ALGEBRAIC A.3 LIMITS SIMPLIFICATION**

Ex 8: Evaluate:

Ex 9: Evaluate:

$$\lim_{x \to 0} \frac{3x^2 - 2x}{x^2 + 2x} = \boxed{ }$$

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \square$$

Ex 11: Evaluate:

$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x + 1} = \square$$

FIRST FINDING DERIVATIVES FROM PRINCIPLES

Ex 12: Evaluate:

$$\lim_{h \to 0} \frac{(2(x+h)+3) - (2x+3)}{h} = \Box$$

Ex 13: Evaluate:

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \boxed{\qquad}$$

Ex 14: Evaluate for $x \neq 0$:

Ex 15: Evaluate for x > 0:

$$\lim_{h\to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} =$$

RESOLVING INDETERMINATE FORMS BY **FACTORING**

Ex 16: Evaluate the following limit algebraically:

$$\lim_{x \to 0} \frac{x + x^2}{2x}$$

Ex 17: Evaluate the following limit algebraically:

$$\lim_{x \to 0} \frac{5x^2 + 3x}{2x^2 - x}$$

B ALGEBRAIC EVALUATION OF LIMITS

B.1 APPLYING THE LIMIT LAWS

Ex 20: Given that $\lim_{x\to a} f(x) = 3$ and $\lim_{x\to a} g(x) = -1$, evaluate:

$$\lim_{x \to a} [f(x)g(x)] = \boxed{}$$

Ex 21: Given that $\lim_{x\to a} f(x) = 3$ and $\lim_{x\to a} g(x) = -1$, evaluate:

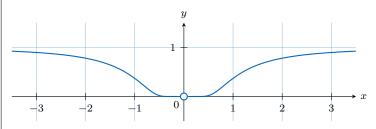
$$\lim_{x \to a} [f(x) + g(x)] = \boxed{}$$

Ex 22: Given that $\lim_{x\to a} f(x) = 3$, evaluate:

$$\lim_{x \to a} [5f(x)] = \boxed{}$$

Ex 23: Given that $\lim_{x\to a} f(x) = 3$ and $\lim_{x\to a} g(x) = -1$, evaluate:

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \boxed{}$$

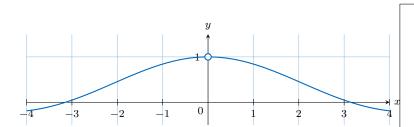

Ex 18: Evaluate the following limit algebraically:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

C EXISTENCE OF A LIMIT

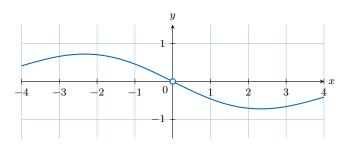
C.1 EVALUATING LIMITS GRAPHICALLY

Ex 24: The graph of the function $f(x) = e^{-1/x^2}$ is shown below.


Evaluate graphically:

$$\lim_{x\to 0} e^{-1/x^2} =$$

Ex 19: Evaluate the following limit algebraically:


$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x - 2}$$

Ex 25: The graph of the function $f(x) = \frac{\sin(x)}{x}$ is shown below.

Evaluate graphically:

Ex 26: The graph of the function $f(x) = \frac{\cos(x) - 1}{x}$ is shown below.

Evaluate graphically:

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = \square$$

D INFINITE LIMITS AND VERTICAL ASYMPTOTES

D.1 EVALUATING INFINITE LIMITS

Ex 27: Evaluate the following one-sided limit:

$$\lim_{x \to 1^+} \frac{1}{x - 1}$$

\mathbf{Ex} 28: Evaluate the following one-sided limit:

$$\lim_{x\to 1^-}\frac{1}{x-1}$$

Ex 29: Evaluate the following limit:

$$\lim_{x \to 2} \frac{-5}{(x-2)^2}$$

D.2 FINDING LIMITS AND VERTICAL ASYMPTOTES

Ex 30: Consider the function $f(x) = \frac{x+1}{x-2}$.

- 1. Evaluate the one-sided limits of f(x) as x approaches 2:
 - $\bullet \lim_{x \to 2^+} f(x)$
 - $\bullet \lim_{x \to 2^-} f(x)$
- 2. Does $\lim_{x\to 2} f(x)$ exist? Justify your answer.
- 3. Hence, state the equation of any vertical asymptotes of the graph of y = f(x).

Ex 31: Consider the function $f(x) = \frac{x}{(x-1)^2}$.

- 1. Evaluate the one-sided limits of f(x) as x approaches 1:
 - $\bullet \lim_{x \to 1^+} f(x)$
 - $\bullet \lim_{x \to 1^-} f(x)$
- 2. Does $\lim_{x\to 1} f(x)$ exist? Justify your answer.
- 3. Hence, state the equation of any vertical asymptotes of the graph of y = f(x).

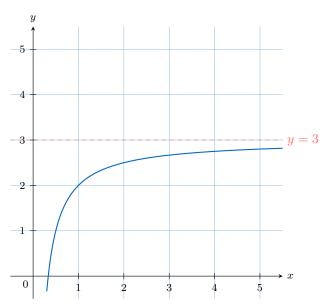
E LIMITS AT INFINITY

E.1 EVALUATING LIMITS AT INFINITY

Ex 32: Evaluate:

$$\lim_{x \to \infty} \frac{3x^2 - x + 4}{2x^2 + 5x - 1} = \boxed{}$$

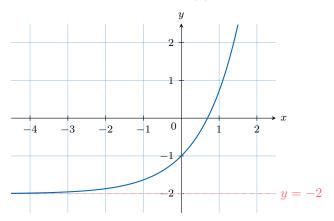
Ex 33: Evaluate:


$$\lim_{x\to\infty}\frac{2x+5}{x^2-3x+1}=$$

Ex 34: Evaluate:

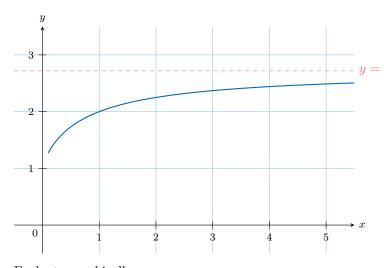
$$\lim_{x \to -\infty} \frac{4 - 3x}{2x + 1} =$$

E.2 DETERMINING END BEHAVIOR GRAPHICALLY


Ex 35: The graph of the function $f(x) = -\frac{1}{x} + 3$ is shown below for x > 0.

Evaluate graphically:

$$\lim_{x \to \infty} \left(-\frac{1}{x} + 3 \right) = \boxed{}$$


Ex 36: The graph of the function $f(x) = e^x - 2$ is shown below.

Evaluate graphically:

$$\lim_{x \to -\infty} (e^x - 2) = \boxed{}$$

Ex 37: The graph of the function $f(x) = (1 + \frac{1}{x})^x$ is shown below for x > 0.

Evaluate graphically:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \square$$

E.3 FINDING LIMITS AT INFINITY WITH RADICAL FUNCTIONS

Ex 38: Consider the function $f(x) = \frac{2x}{\sqrt{x^2 + 1}}$.

1. Find $\lim_{x \to \infty} f(x)$.

2. Find $\lim_{x \to -\infty} f(x)$.

3. Hence, write down the equations of any horizontal asymptotes of the graph of y=f(x).

---- y = e **Ex 39:** Consider the function $f(x) = \frac{\sqrt{9x^2 + 4}}{x - 1}$.

1. Find $\lim_{x \to \infty} f(x)$.

2. Find $\lim_{x \to -\infty} f(x)$.

3. Hence, write down the equations of any horizontal asymptotes of the graph of y = f(x).

	G CONTINUITY
	G.1 EVALUATING LIMITS USING CONTINU
	Ex 43: Evaluate: $\lim_{x\to 1} e^{2x} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
	Ex 44: Evaluate:
F THE SQUEEZE THEOREM	$\lim_{x\to 3} \sqrt{x^2+7} = $ Ex 45: Evaluate:
F.1 APPLYING THE SQUEEZE THEOREM	$\lim_{x \to \pi} \cos(x + \pi) = $
Ex 40: Evaluate $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$.	Ex 46: Evaluate: $\lim_{x \to 2} \sin\left(\frac{x^2 - 4}{x - 2}\pi\right) = \square$
	Ex 47: Evaluate: $\lim_{x \to \infty} [\ln(x+1) - \ln(x)] = $
Ex 41: Evaluate $\lim_{x\to 0} x \cos\left(\frac{1}{x^2}\right)$.	

Ex 42: Evaluate $\lim_{x\to\infty} \frac{\cos(x)}{x}$.