A FUNDAMENTAL CONCEPTS OF FUNCTIONS

A.1 WHAT IS A FUNCTION?

A.1.1 WRITING FUNCTIONS: LEVEL 1

Ex 1: Consider the following calculation program:

- 1. Choose a number.
- 2. Subtract 5 from the chosen number.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{x - 5}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Subtract 5 from the chosen number: x 5.

Thus, the function is:

$$f(x) = x - 5$$

Ex 2: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by three.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = 3x$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by three: 3x.

Thus, the function is:

$$f(x) = 3x$$

Ex 3: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by five.
- 3. Subtract 2 from the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{5x - 2}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by five: 5x.
- 3. Subtract 2 from the result obtained: 5x 2.

Thus, the function is:

$$f(x) = 5x - 2$$

Ex 4: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by -2.
- 3. Add 5 to the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{-2x + 5}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by -2: -2x.
- 3. Add 5 to the result obtained: -2x + 5.

Thus, the function is:

$$f(x) = -2x + 5$$

A.1.2 WRITING FUNCTIONS: LEVEL 2

Ex 5: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by itself.
- 3. Subtract 1 from the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{x^2 - 1}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by itself: x^2 .
- 3. Subtract 1 from the result obtained: $x^2 1$.

Thus, the function is:

$$f(x) = x^2 - 1$$

Ex 6: Consider the following calculation program:

- 1. Choose a number.
- 2. Square the chosen number.
- 3. Multiply the result by 2.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = 2x^2$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Square the chosen number: x^2 .
- 3. Multiply the result by 2: $2x^2$.

Thus, the function is:

$$f(x) = 2x^2$$

Ex 7: Consider the following calculation program:

- 1. Choose a number.
- 2. Subtract 1 from the chosen number.
- 3. Multiply the result by the original number chosen.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{(x-1)x}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Subtract 1 from the chosen number: x-1.
- 3. Multiply the result by the original number: (x-1)x.

Thus, the function is:

$$f(x) = (x - 1)x$$

A.1.3 CALCULATING f(x)

Ex 8: For f(x) = x + 3,

$$f(4) = 7$$

Answer:

$$f(4) = (4) + 3$$
 (substituting x with (4))
= $4 + 3$
= 7

Ex 9: For f(x) = 2x - 1,

$$f(5) = 9$$

Answer:

$$f(5) = 2 \times (5) - 1 \quad \text{(substituting } x \text{ with } (5)\text{)}$$
$$= 10 - 1$$
$$= 9$$

Ex 10: For f(x) = 3x + 2,

$$f(2) = 8$$

Answer:

$$f(2) = 3 \times (2) + 2 \quad \text{(substituting } x \text{ with } (2)\text{)}$$
$$= 6 + 2$$
$$= 8$$

Ex 11: For
$$f(x) = x^2 - 1$$
,

$$f(3) = 8$$

Answer:

$$f(3) = (3)^2 - 1$$
 (substituting x with (3))
= 9 - 1
= 8

Ex 12: For f(x) = 5x - 3,

$$f(1) = 2$$

Answer:

$$f(1) = 5 \times (1) - 3$$
 (substituting x with (1))
= $5 - 3$
= 2

Ex 13: For $f(x) = \frac{x}{2} + 4$,

$$f(6) = 7$$

Answer:

$$f(6) = \frac{(6)}{2} + 4 \quad \text{(substituting } x \text{ with } (6)\text{)}$$

$$= 3 + 4$$

$$= 7$$

Ex 14: For f(x) = x - 5,

$$f(10) = 5$$

Answer:

$$f(10) = (10) - 5$$
 (substituting x with (10))
= 10 - 5
= 5

Ex 15: For f(x) = 2x - 5,

$$f(-2) = \boxed{-9}$$

Answer:

$$f(-2) = 2 \times (-2) - 5 \quad \text{(substituting } x \text{ with } (-2)\text{)}$$
$$= -4 - 5$$
$$= -9$$

Ex 16: For f(x) = -x + 4,

$$f(-3) = 7$$

Answer:

$$f(-3) = -(-3) + 4 \quad \text{(substituting } x \text{ with } (-3))$$

$$= 3 + 4$$

$$= 7$$

Ex 17: For f(x) = 3x - 7,

$$f(-1) = -10$$

Answer:

$$f(-1) = 3 \times (-1) - 7 \quad \text{(substituting } x \text{ with } (-1)\text{)}$$
$$= -3 - 7$$
$$= -10$$

Ex 18: For $f(x) = x^2 - 2x$,

$$f(-2) = 8$$

Answer:

$$f(-2) = (-2)^2 - 2 \times (-2)$$
 (substituting x with (-2))
= 4 + 4
= 8

Ex 19: For f(x) = 2x + 3,

$$f(-3) = \boxed{-3}$$

Answer:

$$f(-3) = 2 \times (-3) + 3 \quad \text{(substituting } x \text{ with } (-3)\text{)}$$
$$= -6 + 3$$
$$= -3$$

Ex 20: For $f(x) = \frac{x}{2} - 4$,

$$f(8) = 0$$

Answer:

$$f(8) = \frac{(8)}{2} - 4 \quad \text{(substituting } x \text{ with } (8)\text{)}$$
$$= 4 - 4$$

Ex 21: For $f(x) = \frac{3x-5}{2}$,

$$f(-1) = \boxed{-4}$$

Answer:

$$f(-1) = \frac{3 \times (-1) - 5}{2}$$
 (substituting x with (-1))
$$= \frac{-3 - 5}{2}$$

$$= \frac{-8}{2}$$

Ex 22: For $f(x) = \frac{x-6}{2} - 3$,

$$f(10) = \boxed{-1}$$

Answer:

$$f(10) = \frac{(10) - 6}{2} - 3 \quad \text{(substituting } x \text{ with } (10)\text{)}$$

$$= \frac{4}{2} - 3$$

$$= 2 - 3$$

$$= -1$$

A.1.4 CALCULATING f(x)

Ex 23: For $f : x \mapsto x + 3$,

$$f(4) = 7$$

Answer.

$$f(4) = (4) + 3$$
 (substituting x with (4))
= $4 + 3$
= 7

Ex 24: For $f: x \mapsto x^2 - 1$,

$$f(2) = 3$$

Answer:

$$f(2) = (2)^2 - 1 \quad \text{(substituting } x \text{ with } (2)\text{)}$$
$$= 4 - 1$$
$$= 3$$

Ex 25: For $f: x \mapsto (x-1)(x-2)$,

$$f(0) = 2$$

Answer:

$$f(0) = (0-1)(0-2) \quad \text{(substituting } x \text{ with } (0))$$
$$= (-1) \times (-2)$$
$$= 2$$

Ex 26: For $f: x \mapsto x^3$,

$$f(-1) = \boxed{-1}$$

Answer:

$$f(-1) = (-1)^3 \quad \text{(substituting } x \text{ with } (-1))$$
$$= -1$$

A.1.5 EVALUATING FUNCTIONS WITH ALGEBRAIC EXPRESSIONS

Ex 27: For the function f(x) = 2x + 3, expand and simplify the expression for f(x + 1).

$$f(x+1) = 2x+5$$

Answer: To find the expression for f(x+1), we substitute every instance of x in the formula for f(x) with the expression (x+1).

$$f(x+1) = 2(x+1) + 3$$
$$= 2x + 2 + 3$$
$$= 2x + 5$$

Ex 28: For the function $f(x) = x^2 - 1$, expand and simplify the expression for f(x - 1).

$$f(x-1) = x^2 - 2x$$

Answer: To find the expression for f(x-1), we substitute every instance of x in the formula for f(x) with the expression (x-1).

$$f(x-1) = (x-1)^2 - 1$$
$$= (x^2 - 2x + 1) - 1$$
$$= x^2 - 2x$$

Ex 29: For the function f(x) = 10 - 3x, expand and simplify the expression for f(x + 2).

$$f(x+2) = \boxed{4-3x}$$

Answer: To find the expression for f(x+2), we substitute every instance of x in the formula for f(x) with the expression (x+2).

$$f(x+2) = 10 - 3(x+2)$$
$$= 10 - 3x - 6$$
$$= 4 - 3x$$

Ex 30: For the function $f(x) = x^2 - 1$, expand and simplify the expression for $f(x^2 + 1)$.

$$f(x^2 + 1) = \boxed{x^4 + 2x^2}$$

Answer: To find the expression for $f(x^2 + 1)$, we substitute every instance of x in the formula for f(x) with the expression $(x^2 + 1)$.

$$f(x^{2} + 1) = (x^{2} + 1)^{2} - 1$$

$$= ((x^{2})^{2} + 2(x^{2})(1) + 1^{2}) - 1$$

$$= (x^{4} + 2x^{2} + 1) - 1$$

$$= x^{4} + 2x^{2}$$

A.1.6 SUBSTITUTING VALUES AND EXPRESSIONS INTO A FUNCTION

Ex 31: For $f: x \mapsto 1 - 3x$, find in simplest form:

- 1. $f(-2) = \boxed{7}$
- 2. $f(3) = \boxed{-8}$
- 3. $f(x+1) = \boxed{-3x-2}$
- 4. $f(x^2) = 1 3x^2$

Answer:

1.
$$f(-2) = 1 - 3 \times (-2)$$
 (substituting x with -2)
= $1 + 6$
= 7

2.
$$f(3) = 1 - 3 \times 3$$
 (substituting x with 3)
= $1 - 9$
= -8

3.
$$f(x+1) = 1 - 3(x+1)$$
 (substituting x with $(x+1)$)
= $1 - 3x - 3$ (expand)
= $-3x - 2$

4.
$$f(x^2) = 1 - 3(x^2)$$
 (substituting x with (x^2))
= $1 - 3x^2$

Ex 32: For $f: x \mapsto x^2$, find in simplest form:

- 1. f(3) = 9
- 2. $f(-1) = \boxed{1}$
- $3. \ f(-x) = \boxed{x^2}$
- 4. $f(x+1) = x^2 + 2x + 1$
- 5. $f(x+2) = x^2 + 4x + 4$
- 6. $f(2x) = \boxed{4x^2}$

Answer:

- 1. $f(3) = 3^2 = 9$
- 2. $f(-1) = (-1)^2 = 1$
- 3. $f(-x) = (-x)^2$ (substituting x with (-x)) $= (-1)^2 x^2$ $= x^2$
- 4. $f(x+1) = (x+1)^2$ (substituting x with (x+1)) = $x^2 + 2x + 1$ (binomial expansion)
- 5. $f(x+2) = (x+2)^2$ (substituting x with (x+2)) = $x^2 + 4x + 4$ (binomial expansion)
- 6. $f(2x) = (2x)^2$ (substituting x with (2x)) = $4x^2$

Ex 33: For $g: x \mapsto x^2 - 2x + 1$, find in simplest form:

- 1. $g(3) = \boxed{4}$
- 2. $g(-1) = \boxed{4}$
- 3. $g(-x) = x^2 + 2x + 1$
- 4. $q(x+1) = x^2$
- 5. $g(x+2) = x^2 + 2x + 1$
- 6. $g(2x) = 4x^2 4x + 1$

Answer:

1.
$$g(3) = (3)^2 - 2 \times (3) + 1$$
 (substituting x with 3)
= $9 - 6 + 1$ (evaluate)

2.
$$g(-1) = (-1)^2 - 2 \times (-1) + 1$$
 (substituting x with -1)
= $1 + 2 + 1$ (evaluate)
= 4

3.
$$g(-x) = (-x)^2 - 2 \times (-x) + 1$$
 (substituting x with $(-x)$)
= $x^2 + 2x + 1$ (expand)

4.
$$g(x+1) = (x+1)^2 - 2(x+1) + 1$$
 (substituting x with $(x+1) = (x^2 + 2x + 1) - (2x + 2) + 1$ (expand)
 $= x^2 + 2x + 1 - 2x - 2 + 1$ (combine)
 $= x^2$

5.
$$g(x+2) = (x+2)^2 - 2(x+2) + 1$$
 (substituting x with $(x+\$)$) the solution is $x = -5$.
 $= (x^2 + 4x + 4) - (2x + 4) + 1$ (expand) (Optional) We can check to $= x^2 + 4x + 4 - 2x - 4 + 1$ (combine) $f(-5)$ $= x^2 + 2x + 1$

6.
$$g(2x) = (2x)^2 - 2 \times (2x) + 1$$
 (substituting x with $(2x)$)
$$= 4x^2 - 4x + 1$$
 (expand)

A.1.7 SOLVING LINEAR EQUATIONS FOR f(x) = y

Ex 34: Let f(x) = 3x + 12. Find all x such that f(x) = 0. Justify your answer.

Answer: We solve the equation:

$$f(x) = 0$$

 $3x + 12 = 0$
 $3x = -12$ (subtract 12 from both sides)
 $x = -4$ (divide both sides by 3)

So the solution is x = -4.

(Optional) We can check this by calculating f(-4):

$$f(-4) = 3 \times (-4) + 12$$

= -12 + 12
= 0

Ex 35: Let f(x) = 2x - 18. Find all x such that f(x) = 0. Justify your answer.

Answer: We solve the equation:

$$f(x) = 0$$

$$2x - 18 = 0$$

$$2x - 18 + 18 = 0 + 18 \quad \text{(add 18 to both sides)}$$

$$2x = 18$$

$$\frac{2x}{2} = \frac{18}{2} \quad \text{(divide both sides by 2)}$$

$$x = 9$$

So the solution is x = 9.

(Optional) We can check this by calculating f(9):

$$f(9) = 2 \times 9 - 18$$

= 18 - 18
= 0

Ex 36: Let f(x) = 2x + 20. Find all x such that f(x) = 10. Justify your answer.

Answer: We solve the equation:

$$f(x) = 10$$

$$2x + 20 = 10$$

$$2x + 20 - 20 = 10 - 20 \quad \text{(subtract 20 from both sides)}$$

$$2x = -10$$

$$\frac{2x}{2} = \frac{-10}{2} \quad \text{(divide both sides by 2)}$$

(Optional) We can check this by calculating f(-5):

$$f(-5) = 2 \times (-5) + 20$$
$$= -10 + 20$$
$$= 10$$

Ex 37: Let f(x) = -6x + 7. Find all x such that f(x) = 2. Justify your answer.

Answer: We solve the equation:

$$f(x) = 2$$

$$-6x + 7 = 2$$

$$-6x + 7 - 7 = 2 - 7 (subtract 7 from both sides)$$

$$-6x = -5$$

$$\frac{-6x}{-6} = \frac{-5}{-6} (divide both sides by -6)$$

$$x = \frac{5}{6}$$

So the solution is $x = \frac{5}{6}$.

(Optional) We can check this by calculating $f(\frac{5}{6})$:

$$f\left(\frac{5}{6}\right) = -6 \times \frac{5}{6} + 7$$
$$= -5 + 7$$
$$= 2$$

A.1.8 FINDING PREIMAGES

Ex 38: Let $f: x \mapsto \frac{4x+1}{x-2}$. Find the value of x for which f(x) = 3. Justify your answer.

Answer: We solve the equation:

$$f(x) = 3$$

$$\frac{4x+1}{x-2} = 3$$

$$4x+1 = 3(x-2) \quad \text{(multiply both sides by } (x-2)\text{)}$$

$$4x+1 = 3x-6 \quad \text{(expand the right side)}$$

$$4x-3x = -6-1 \quad \text{(rearrange terms)}$$

$$x = -7$$

The preimage of 3 is x = -7.

Ex 39: Let $f: x \mapsto \sqrt{2x+5}$. Find the value of x such that f(x) = 3. Justify your answer.

Answer: We solve the equation:

$$f(x) = 3$$

$$\sqrt{2x+5} = 3$$

$$(\sqrt{2x+5})^2 = 3^2 \quad \text{(square both sides)}$$

$$2x+5=9$$

$$2x=4 \quad \text{(subtract 5 from both sides)}$$

$$x=2 \quad \text{(divide by 2)}$$

The preimage of 3 is x = 2. We can check that this value is in the natural domain of f (where $2x + 5 \ge 0$). For x = 2, we have $2(2) + 5 = 9 \ge 0$, so the solution is valid.

Ex 40: Let $f: x \mapsto x^2 - 6x + 8$. Find all x such that f(x) = 0. Justify your answer.

Answer: We need to find the value(s) of x for which f(x) = 0. This requires solving a quadratic equation.

$$f(x) = 0$$

$$x^{2} - 6x + 8 = 0$$

$$(x - 2)(x - 4) = 0$$
 (factor the quadratic)

This gives two possible solutions:

$$x - 2 = 0 \Leftrightarrow x = 2$$

$$x - 4 = 0 \Leftrightarrow x = 4$$

The preimages of 0 are x = 2 and x = 4.

Note: If factoring is not straightforward, the roots of any quadratic equation $ax^2 + bx + c = 0$ can be found using the quadratic formula after calculating the discriminant $\Delta = b^2 - 4ac$. For the equation $x^2 - 6x + 8 = 0$, we have a = 1, b = -6, and c = 8.

1. Calculate the discriminant:

$$\Delta = (-6)^2 - 4(1)(8) = 36 - 32 = 4$$

2. Apply the quadratic formula: Since $\Delta > 0$, there are two distinct real roots.

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(-6) \pm \sqrt{4}}{2(1)} = \frac{6 \pm 2}{2}$$

This gives the same two solutions:

$$x_1 = \frac{6+2}{2} = \frac{8}{2} = 4$$

$$x_2 = \frac{6-2}{2} = \frac{4}{2} = 2$$

Ex 41: Let $f(x) = x^2 - 2x + 5$. Find all real numbers x such that f(x) = 1. Justify your answer.

Answer: We need to find the value(s) of x for which f(x) = 1. We set up the equation:

$$f(x) = 1$$

$$x^2 - 2x + 5 = 1$$

$$x^2 - 2x + 4 = 0$$
 (rearrange into standard quadratic form)

To solve this quadratic equation, we first calculate the discriminant, $\Delta = b^2 - 4ac$, where a = 1, b = -2, and c = 4.

$$\Delta = (-2)^2 - 4(1)(4) = 4 - 16 = -12$$

Since the discriminant is negative ($\Delta < 0$), the quadratic equation has no real solutions.

Therefore, there are **no real preimages** of 1 under the function f.

A.1.9 ANALYZING LINEAR MODELS IN CONTEXT

Ex 42: The value of a laptop t years after purchase is given by V(t) = 1800 - 300t dollars.

1. Find V(3)

900

State what this value means

The value of the laptop after 3 years is \$900.

2. Find t when V(t) = 600.

4

Explain what this represents.

After 4 years, the laptop is worth \$600.

3. Find the original purchase price of the laptop.

1800

Answer:

- 1. $V(3) = 1800 300 \times 3 = 1800 900 = 900$. This means the value of the laptop after 3 years is \$900.
- 2. Solve 1800 300t = 600:

$$1800 - 300t = 600$$

$$1800 - 600 = 300t$$

$$1200 = 300t$$

$$t = 4.$$

This represents that after 4 years, the laptop is worth \$600.

3. The original purchase price is $V(0) = 1800 - 300 \times 0 = 1800$ dollars.

Ex 43: The height of a plant t weeks after planting is given by H(t) = 5 + 2t cm.

1. Find H(4)

13

State what this value means

The height of the plant after 4 weeks is 13 cm.

2. Find t when H(t) = 15.

5

Explain what this represents.

After 5 weeks, the plant is 15 cm tall.

3. Find the initial height of the plant.

5

Answer:

- 1. $H(4) = 5 + 2 \times 4 = 5 + 8 = 13$. This means the height of the plant after 4 weeks is 13 cm.
- 2. Solve 5 + 2t = 15:

$$5 + 2t = 15$$

$$2t = 10$$

$$t = 5.$$

This represents that after 5 weeks, the plant is 15 cm tall.

3. The initial height is $H(0) = 5 + 2 \times 0 = 5$ cm.

The temperature of water t minutes after starting to heat it is given by T(t) = 25 + 15t degrees Celsius.

1. Find T(3)

State what this value means

2. Find t when T(t) = 100.

Explain what this represents.

After 5 minutes, the water reaches boiling point at 100°C.

3. Find the initial temperature of the water.

Answer:

- 1. $T(3) = 25 + 15 \times 3 = 25 + 45 = 70$. This means the temperature of the water after 3 minutes is $70^{\circ}\mathrm{C}$.
- 2. Solve 25 + 15t = 100:

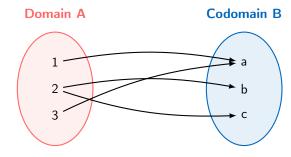
$$25 + 15t = 100$$
$$15t = 75$$
$$t = 5.$$

This represents that after 5 minutes, the water reaches boiling point at 100°C.

3. The initial temperature is $T(0) = 25 + 15 \times 0 = 25$ °C.

A.1.10 IDENTIFYING FUNCTIONS FROM MAPPINGS

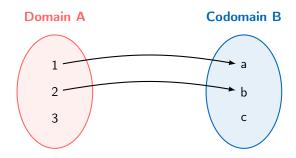
Ex 45: A rule f maps elements from the set $A = \{1, 2, 3\}$ to the set $B = \{a, b, c\}$. The mappings are shown in the diagram below.



Is f a function? Explain your reasoning.

Answer: No, f is not a function. A function must assign exactly one output to each input. In this case, the input element 2 from the domain is mapped to two different outputs, b and c. This violates the definition of a function.

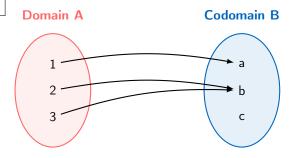
Ex 46: A rule g maps elements from the set $A = \{1, 2, 3\}$ to the set $B = \{a, b, c\}$. The mappings are shown in the diagram below.



Is g a function? Explain your reasoning.

The temperature of the water after 3 minutes is $70^{\circ}C_{n_{swer:}}$ No, g is not a function. A function must assign an output to every element in the domain. In this case, the input element 3 from the domain is not mapped to any output.

> Ex 47: A rule h maps elements from the set $A = \{1, 2, 3\}$ to the set $B = \{a, b, c\}$. The mappings are shown in the diagram



Is h a function? Explain your reasoning.

Answer: Yes, h is a function. Every element in the domain A (1, 2, and 3) is mapped to exactly one element in the codomain B. The fact that inputs 2 and 3 both map to the same output b is allowed. The function is defined by:

$$h(1) = a, h(2) = b, h(3) = b$$

A.1.11 DOMAIN, CODOMAIN, AND NOTATION

Ex 48: Consider the function defined as $f: \mathbb{Z} \longrightarrow \mathbb{Z}$

$$x \longmapsto x-5$$

- 1. What is the domain of f?
- 2. What is the codomain of f?
- 3. What is the image of x = 7?
- 4. What is the preimage of y = -3?

Answer:

- 1. The domain is the set of all integers, \mathbb{Z} .
- 2. The codomain is the set of all integers, \mathbb{Z} .
- 3. The image of x = 7 is f(7) = 7 5 = 2.
- 4. To find the preimage of y = -3, we solve f(x) = -3:

$$x - 5 = -3$$
$$x = -3 + 5$$
$$x = 2$$

The preimage of -3 is 2.

codomain \mathbb{N} . The rule is "divide the input by 2".

- 1. Write the function using formal notation.
- 2. Explain why this rule does not define a valid function g: $\mathbb{N} \to \mathbb{N}$.

Answer:

1. The formal notation is $g: \mathbb{N} \longrightarrow \mathbb{N}$.

$$x \;\longmapsto\; \frac{x}{2}$$

2. This is not a valid function because the rule does not produce an output in the codomain for every input from the domain. For example, if we take the input x = 3 from the domain \mathbb{N} , the output is $g(3) = \frac{3}{2}$. This output is not in the codomain N. A function must map every element of its domain to an element within its codomain.

Ex 50: Consider the function defined as $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$x \longmapsto x^2 + 1$$

- 1. What is the domain of f?
- 2. What is the codomain of f?
- 3. What is the image of x = -3?
- 4. What are the preimage(s) of y = 5?

Answer:

- 1. The domain is the set of all real numbers, \mathbb{R} .
- 2. The codomain is the set of all real numbers, \mathbb{R} .
- 3. The image of x = -3 is $f(-3) = (-3)^2 + 1 = 9 + 1 = 10$.
- 4. To find the preimage(s) of y = 5, we solve f(x) = 5:

$$x^{2} + 1 = 5$$

$$x^{2} = 4$$

$$x = \pm \sqrt{4}$$

$$x = 2 \text{ or } x = -2$$

The preimages of 5 are 2 and -2.

Ex 51: A rule h is defined by $h: \mathbb{Z} \longrightarrow \mathbb{R}$.

$$x \longmapsto \sqrt{x}$$

- 1. State the domain and codomain of h.
- 2. Explain why this rule does not define a valid function.

Answer:

- 1. The domain is the set of all integers, \mathbb{Z} . The codomain is the set of all real numbers, \mathbb{R} .
- 2. This is not a valid function because the rule is not defined for all elements of the domain. The domain \mathbb{Z} includes negative integers. For any negative integer, such as x = -1, the output would be $h(-1) = \sqrt{-1}$, which is not a real number and thus not an element of the codomain \mathbb{R} .

Ex 49: A function g has the domain $\mathbb{N} = \{1, 2, 3, ...\}$ and **Ex 52:** Let $A = \{-2, -1, 0, 1, 2\}$ and $B = \{0, 1, 2, 3, 4\}$. Consider the function $k:A\longrightarrow B$.

$$x \longmapsto x^2$$

- 1. What is the domain of k?
- 2. What is the codomain of k?
- 3. Find the image for each element in the domain.

Answer:

- 1. The domain is the set $A = \{-2, -1, 0, 1, 2\}$.
- 2. The codomain is the set $B = \{0, 1, 2, 3, 4\}$.
- 3. We calculate the image for each input:
 - $k(-2) = (-2)^2 = 4$
 - $k(-1) = (-1)^2 = 1$
 - $k(0) = 0^2 = 0$
 - $k(1) = 1^2 = 1$
 - $k(2) = 2^2 = 4$

All these images (0, 1, 4) are in the codomain B.

A.2 NATURAL DOMAIN AND RANGE

A.2.1 FINDING THE NATURAL DOMAIN: LEVEL 1

MCQ 53: Find the domain of the function $f: x \mapsto x^2$.

- $\boxtimes \mathbb{R}$
- $\square \{x \in \mathbb{R} \mid x \neq 0\}$
- \square $[0,+\infty)$
- \Box $(-\infty,0)$

Answer: The function $f(x) = x^2$ is defined for all real numbers because squaring any real number yields a real result. Therefore, the domain is all real numbers, which is \mathbb{R} .

MCQ 54: Find the domain of the function $f: x \mapsto \frac{1}{x}$.

- \square \mathbb{R}
- $\boxtimes \{x \in \mathbb{R} \mid x \neq 0\}$
- \square $[0,+\infty)$
- \Box $(-\infty,0)$

Answer: The function $f(x) = \frac{1}{x}$ is undefined at x = 0 because division by zero is not allowed. Therefore, the domain is all real numbers except 0, which is $\{x \in \mathbb{R} \mid x \neq 0\}$.

MCQ 55: Find the domain of the function $f: x \mapsto \sqrt{x}$.

- \square \mathbb{R}
- $\square \{x \in \mathbb{R} \mid x \neq 0\}$
- $\boxtimes [0, +\infty)$
- \Box $(-\infty,0)$

Answer: The function $f(x) = \sqrt{x}$ is undefined for negative real numbers because the square root of a negative number is not real. Therefore, the domain is all non-negative real numbers, which is $[0, +\infty)$.

A.2.2 FINDING THE NATURAL DOMAIN: LEVEL 2

MCQ 56: Find the domain of the function $f: x \mapsto \sqrt{2x-4}$.

 \square \mathbb{R}

 $\square \{x \in \mathbb{R} \mid x \neq 4\}$

 $\boxtimes [2, +\infty)$

 $\Box (-\infty, 4]$

Answer: The function $f(x) = \sqrt{2x-4}$ is undefined when the expression inside the square root is negative, i.e., when 2x-4 < 0. Solving this inequality:

$$2x - 4 < 0$$

 $2x < 4$ (adding 4 to both sides)
 $x < 2$ (dividing both sides by 2)

Therefore, the function is defined for $x \geq 2$, so the domain is $[2, +\infty)$.

MCQ 57: Find the domain of the function $f: x \mapsto \frac{x}{x-3}$.

 \square \mathbb{R}

 $\square \{x \in \mathbb{R} \mid x \neq 3 \text{ and } x \neq 0\}$

 \square $[3, +\infty)$

 \Box $(-\infty,3)$

 $\boxtimes \{x \in \mathbb{R} \mid x \neq 3\}$

Answer: The function $f(x) = \frac{x}{x-3}$ is undefined when the denominator is zero, i.e., when x-3=0. Solving this equation:

$$x - 3 = 0$$
$$x = 3$$

Therefore, the function is defined for all real numbers except x=3, so the domain is $\{x\in\mathbb{R}\mid x\neq 3\}$.

MCQ 58: Find the domain of the function $f: x \mapsto \frac{1}{x^2 - 9}$.

 \square \mathbb{R}

 \Box (-3,3)

 \square $[0,+\infty)$

 $\boxtimes \{x \in \mathbb{R} \mid x \neq -3 \text{ and } x \neq 3\}$

 $\square x > 3$

Answer: The function $f(x) = \frac{1}{x^2 - 9}$ is undefined when the denominator is zero, i.e., when $x^2 - 9 = 0$. Solving this equation:

$$x^{2} - 9 = 0$$

$$x^{2} = 9$$

$$x = 3 \quad \text{or} \quad x = -3$$

Therefore, the function is defined for all real numbers except x=3 and x=-3, so the domain is $\{x\in\mathbb{R}\mid x\neq 3 \text{ and } x\neq -3\}$.

MCQ 59: Find the domain of the function $f: x \mapsto \sqrt{6-2x}$.

 \square \mathbb{R}

 $\boxtimes (-\infty, 3]$

 \square $[3, +\infty)$

 \Box $(-\infty, 6]$

Answer: The function $f(x) = \sqrt{6-2x}$ is undefined when the expression inside the square root is negative, i.e., when 6-2x < 0. Solving this inequality:

$$6-2x < 0$$

 $-2x < -6$ (subtract 6 from both sides)

x > 3 (divide both sides by -2, reverse the sign)

Therefore, the function is defined for $x \leq 3$, so the domain is $(-\infty, 3]$.

A.2.3 FINDING THE NATURAL DOMAIN: LEVEL 3

Ex 60: Find the natural domain of the function $f(x) = \frac{5}{x+3}$ Express your answer in interval notation.

Answer: The function is rational. Its value is undefined when the denominator is zero.

$$x+3=0 \Leftrightarrow x=-3$$

The natural domain is all real numbers except for -3. In interval notation, this is $(-\infty, -3) \cup (-3, \infty)$.

Ex 61: Find the natural domain of the function $g(x) = \sqrt{x-4}$. Express your answer in interval notation.

Answer: The function involves a square root. The expression inside the square root (the radicand) must be non-negative.

$$x - 4 \ge 0 \Leftrightarrow x \ge 4$$

The natural domain is all real numbers greater than or equal to 4

In interval notation, this is $[4, \infty)$.

Ex 62: Find the natural domain of the function $h(x) = \frac{1}{\sqrt{x-5}}$. Express your answer in interval notation.

Answer: This function has two restrictions:

- 1. The expression inside the square root must be non-negative: $x-5\geq 0.$
- 2. The denominator cannot be zero: $\sqrt{x-5} \neq 0$.

Combining these two conditions means the expression inside the square root must be strictly positive.

$$x-5>0 \Leftrightarrow x>5$$

The natural domain is all real numbers strictly greater than 5. In interval notation, this is $(5, \infty)$.

Ex 63: Find the natural domain of the function $k(x) = \sqrt{16 - x^2}$. Express your answer in interval notation.

Answer: The expression inside the square root must be non-negative.

$$16 - x^2 > 0$$

This is a quadratic inequality. We can factor the expression:

$$(4-x)(4+x) \ge 0$$

The roots are x = 4 and x = -4. Since the coefficient of x^2 is negative, the parabola opens downwards. The expression is greater than or equal to zero between its roots.

The natural domain is all real numbers between -4 and 4, inclusive.

In interval notation, this is [-4, 4].

A.2.4 FINDING THE RANGE

Ex 64: Find the range of the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto |x|-2$

Express your answer in interval notation.

Answer: We analyze the components of the function f(x) = |x| - 2.

1. The absolute value function, |x|, produces only non-negative values, regardless of the input x.

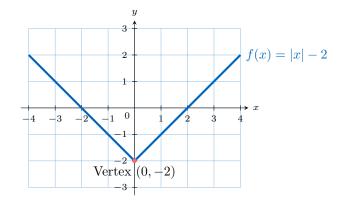
2. The function f(x) is obtained by subtracting 2 from |x|. We can subtract 2 from both sides of the inequality:

$$|x| - 2 \ge 0 - 2$$

$$f(x) \ge -2$$

The minimum value of the function is -2, and it can take any value greater than that.

Therefore, the range is $[-2, \infty)$.



Ex 65: Find the range of the function $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$r \longmapsto (r-2)^2 + 3$$

Express your answer in interval notation.

Answer: The function is a quadratic in vertex form.

1. The term $(x-2)^2$ is a square, so its minimum value is 0.

$$(x-2)^2 \ge 0$$

2. Adding 3 to both sides of the inequality:

$$(x-2)^2+3>3$$

The minimum value of the function is 3, and it can take any value greater than 3.

The range is $[3, \infty)$.

Ex 66: Find the range of the function $g:[0,\infty) \longrightarrow \mathbb{R}$

$$x \longmapsto 5 - \sqrt{x}$$

Express your answer in interval notation.

Answer: We analyze the components of the function over its domain $[0, \infty)$.

1. The square root function produces non-negative values:

$$\sqrt{x} \ge 0$$

2. Multiplying by -1 reverses the inequality sign:

$$-\sqrt{x} < 0$$

3. Adding 5 to both sides:

$$5 - \sqrt{x} < 5$$

The function's maximum value is 5, and since \sqrt{x} can grow indefinitely, the function can become indefinitely negative. The range is $(-\infty, 5]$.

A.3 TABLES OF VALUES

A.3.1 FILLING TABLES OF VALUES

Ex 67: For f(x) = -2x + 1, fill in the table:

x	-2	-1	0	1	2
f(x)	5	3	1	-1	-3

Answer:

- $f(-2) = -2 \times (-2) + 1$ (substituting x with (-2)) = 4 + 1=5
- $f(-1) = -2 \times (-1) + 1$ (substituting x with (-1)) = 2 + 1
- $f(0) = -2 \times (0) + 1$ (substituting x with (0)) = 0 + 1
- $x \mapsto (x-2)^2 + 3$ $f(1) = -2 \times (1) + 1$ (substituting x with f(1)) = -2 + 1= -1
 - $f(2) = -2 \times (2) + 1$ (substituting x with (2)) = -4 + 1= -3

So the table of values is:

x	-2	-1	0	1	2
f(x)	5	3	1	-1	-3

Ex 68: For $f(x) = x^2 - 3x + 1$, fill in the table:

x	-2	-1	0	1	2
f(x)	11	5	1	-1	-1

Answer:

- $f(-2) = ((-2))^2 3 \times (-2) + 1$ (substituting x with (-2)) = 4 + 6 + 1= 11
- $f(-1) = ((-1))^2 3 \times (-1) + 1$ (substituting x with (-1)) = 1 + 3 + 1= 5
- $f(0) = (0)^2 3 \times (0) + 1$ (substituting x with (0)) = 0 + 0 + 1= 1
- $f(1) = (1)^2 3 \times (1) + 1$ (substituting x with (1)) = 1 - 3 + 1= -1
- $f(2) = (2)^2 3 \times (2) + 1$ (substituting x with (2)) = 4 - 6 + 1= -1

So the table of values is:

x	-2	-1	0	1	2
f(x)	11	5	1	-1	-1

Ex 69: For the rational function $f(x) = \frac{2x}{x+1}$, fill in the table of values.

x	-2	0	1	2
f(x)	4	0	1	$\left[\frac{4}{3}\right]$

Answer:

•
$$f(-2) = \frac{2(-2)}{-2+1} = \frac{-4}{-1} = 4$$

•
$$f(0) = \frac{2(0)}{0+1} = \frac{0}{1} = 0$$

•
$$f(1) = \frac{2(1)}{1+1} = \frac{2}{2} = 1$$

•
$$f(2) = \frac{2(2)}{2+1} = \frac{4}{3}$$

The completed table is:

x	-2	0	1	2
f(x)	4	0	1	$\frac{4}{3}$

Ex 70: For the absolute value function g(x) = |x - 2|, fill in the table of values:

x	-1	0	1	2	3
g(x)	3	2	1	0	1

Answer:

•
$$g(-1) = |-1-2| = |-3| = 3$$

•
$$q(0) = |0 - 2| = |-2| = 2$$

•
$$g(1) = |1 - 2| = |-1| = 1$$

•
$$g(2) = |2 - 2| = |0| = 0$$

•
$$g(3) = |3-2| = |1| = 1$$

The completed table is:

x	-1	0	1	2	3
g(x)	3	2	1	0	1

A.3.2 FINDING THE FUNCTION FROM A TABLE

Ex 71: The table below gives some values for the function h(x) = ax + b. Find the values of a and b and complete the table.

x	0	1	2	5
h(x)	-3	-1	1	7

Answer: We are given two points from the table: (0, -3) and (2, 1).

1. **Find b**: Substitute the point (0, -3) into the function h(x) = ax + b.

$$h(0) = a(0) + b = -3 \Leftrightarrow b = -3$$

2. Find a: Now we know h(x) = ax - 3. Substitute the point (2,1) into this equation.

$$h(2) = a(2) - 3 = 1$$

 $2a = 1 + 3$
 $2a = 4$
 $a = 2$

The function is h(x) = 2x - 3. Now we can complete the table:

•
$$h(1) = 2(1) - 3 = 2 - 3 = -1$$

•
$$h(5) = 2(5) - 3 = 10 - 3 = 7$$

The completed table is:

x	0	1	2	5
h(x)	-3	-1	1	7

Ex 72: The table below gives some values for the function $f(x) = ax^2 + c$. Find the values of a and c and complete the table.

x	-1	0	2	3
f(x)	2	-1	11	26

Answer: We are given two points from the table: (0,-1) and (2,11). We can set up a system of two equations to solve for a and c.

1. **Find c**: Substitute the point (0,-1) into the function $f(x) = ax^2 + c$.

$$f(0) = a(0)^2 + c = -1 \Leftrightarrow c = -1$$

2. **Find a**: Now we know $f(x) = ax^2 - 1$. Substitute the point (2, 11) into this equation.

$$f(2) = a(2)^{2} - 1 = 11$$

$$4a - 1 = 11$$

$$4a = 12$$

$$a = 3$$

The function is $f(x) = 3x^2 - 1$.

Now we can complete the table:

•
$$f(-1) = 3(-1)^2 - 1 = 3(1) - 1 = 2$$

•
$$f(3) = 3(3)^2 - 1 = 3(9) - 1 = 26$$

The completed table is:

x	-1	0	2	3
f(x)	2	-1	11	26

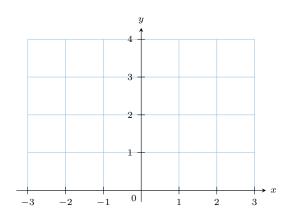
A.4 GRAPHS

A.4.1 PLOTTING LINE GRAPHS

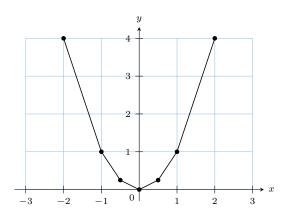
Ex 73: Here is a table of values for the function $f(x) = x^2$:

x	-2	-1	-0.5	0	0.5	1	2
f(x)	4	1	0.25	0	0.25	1	4

Plot the line graph of f.



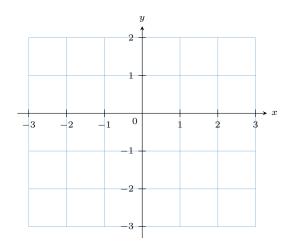
Answer: Plot the points (-2,4), (-1,1), (-0.5,0.25), (0,0), (0.5,0.25), (1,1), and (2,4). Then, connect the points with straight segments.



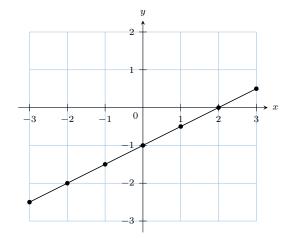
Ex 74: Here is a table of values for the function f(x) = 0.5x - 1:

x	-3	-2	-1	0	1	2	3
f(x)	-2.5	-2	-1.5	-1	-0.5	0	0.5

Plot the line graph of f.



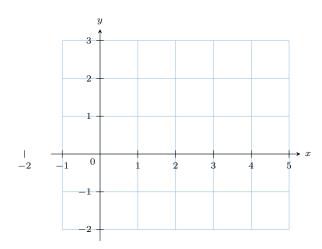
Answer: Plot the points (-3, -2.5), (-2, -2), (-1, -1.5), (0, -1), (1, -0.5), (2, 0), (3, 0.5). Then, connect the points with straight segments to form the line graph.



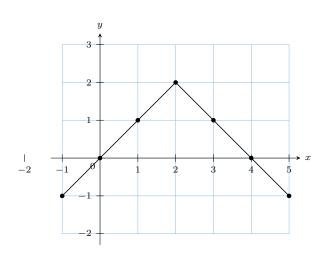
Ex 75: Here is a table of values for the function f(x) = -|x - 2| + 2:

	-	_	_	_		-	
x	-1	U	I	2	3	4	5
f(x)	-1	0	1	2	1	0	-1

Plot the graph of f.

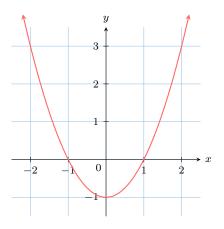


Answer: Plot the points (-1,-1), (0,0), (1,1), (2,2), (3,1), (4,0), and (5,-1). Then, connect the points with straight segments to form the graph.



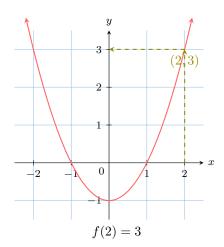
A.4.2 FINDING f(x)

Ex 76: The graph of y = f(x) is:

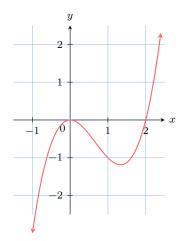


$$f(2) = \boxed{3}$$

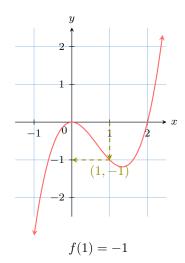
Answer:



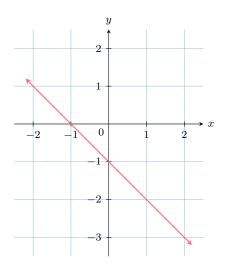
Ex 77: The graph of y = f(x) is:



$$f(1) = \boxed{-1}$$

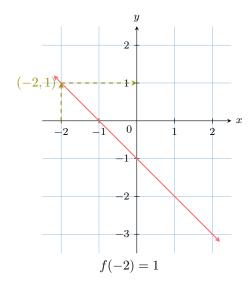


Ex 78: The graph of y = f(x) is:

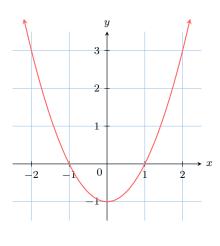


$$f(-2) = 1$$

Answer:

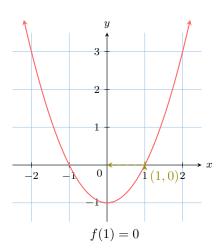


Ex 79: The graph of y = f(x) is:

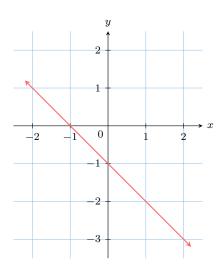


 $f(1) = \boxed{0}$

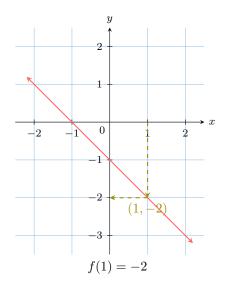
Answer:



Ex 80: The graph of y = f(x) is:

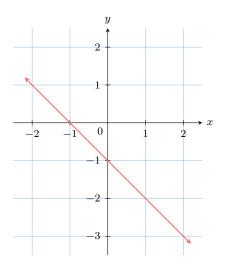


 $f(1) = \boxed{-2}$



A.4.3 FINDING INPUTS FROM OUTPUTS ON A GRAPH

Ex 81: The graph of y = f(x) is:

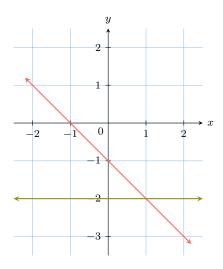


Find all x such that f(x) = -2.

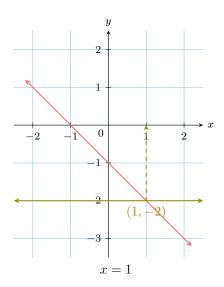
$$x = \boxed{1}$$

Answer:

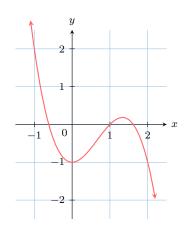
• Draw a horizontal line at y = -2.



• Identify the intersection point with the curve.



Ex 82: The graph of y = f(x) is:

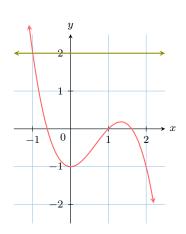


Find all x such that f(x) = 2.

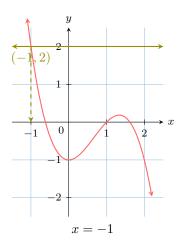
$$x = \boxed{-1}$$

Answer:

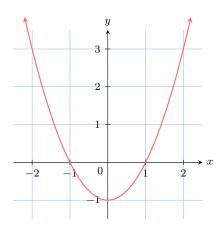
• Draw a horizontal line at y = 2.



• Identify the intersection point with the curve.



Ex 83: The graph of y = f(x) is:

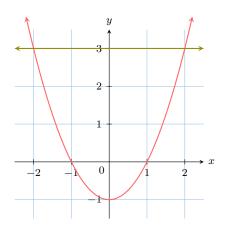


Find all x such that f(x) = 3. Give your answers in increasing order:

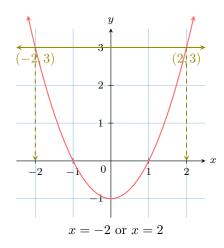
$$x = \boxed{-2}$$
 or $x = \boxed{2}$

Answer:

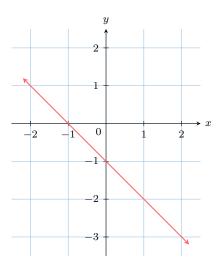
• Draw a horizontal line at y = 3.



• Identify the intersection points with the curve.



Ex 84: The graph of y = f(x) is:

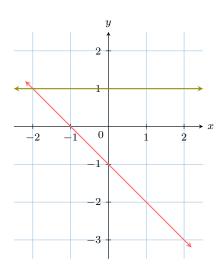


Find all x such that f(x) = 1.

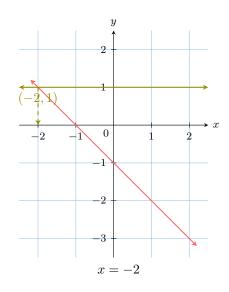
$$x = \boxed{-2}$$

Answer:

• Draw a horizontal line at y = 1.



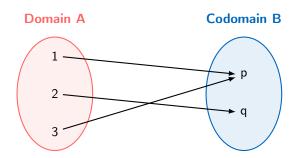
• Identify the intersection point with the curve.



A.5 BIJECTIVE FUNCTIONS

A.5.1 ANALYZING FUNCTION PROPERTIES FROM MAPPING DIAGRAMS

Ex 85: Let $A = \{1, 2, 3\}$ and $B = \{p, q\}$. A function $f: A \to B$ is defined by the mapping diagram below.

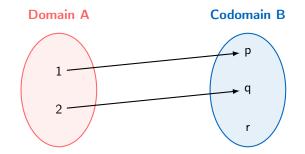


Determine if the function f is injective, surjective, and/or bijective. Justify your answers.

Answer:

- Injectivity: The function is not injective. Different inputs lead to the same output. Specifically, f(1) = p and f(3) = p.
- Surjectivity: The function is surjective. The range of the function is $\{p,q\}$, which is equal to the codomain B. Every element in B has at least one preimage.
- **Bijectivity**: The function is **not bijective** because it is not injective.

Ex 86: Let $A = \{1, 2\}$ and $B = \{p, q, r\}$. A function $g : A \to B$ is defined by the mapping diagram below.

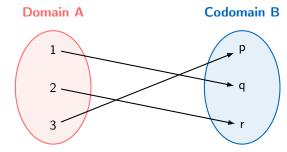


Determine if the function g is injective, surjective, and/or bijective. Justify your answers.

Answer

- **Injectivity**: The function is **injective**. Every input has a unique output; g(1) = p and g(2) = q.
- Surjectivity: The function is **not surjective**. The range is $\{p, q\}$, but the codomain is $\{p, q, r\}$. The element r in the codomain has no preimage in the domain.
- Bijectivity: The function is **not bijective** because it is not surjective.

Ex 87: Let $A = \{1, 2, 3\}$ and $B = \{p, q, r\}$. A function $h: A \to B$ is defined by the mapping diagram below.

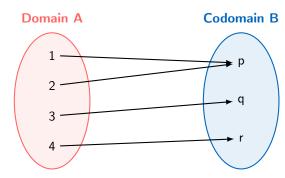


Determine if the function h is injective, surjective, and/or bijective. Justify your answers.

Answer:

- **Injectivity**: The function is **injective**. Every input maps to a distinct output: h(1) = q, h(2) = r, and h(3) = p.
- Surjectivity: The function is surjective. The range is $\{p, q, r\}$, which is equal to the codomain B. Every element in B has a preimage.
- **Bijectivity**: The function is **bijective** because it is both injective and surjective.

Ex 88: Let $A = \{1, 2, 3, 4\}$ and $B = \{p, q, r\}$. A function $k: A \to B$ is defined by the mapping diagram below.



Determine if the function k is injective, surjective, and/or bijective. Justify your answers.

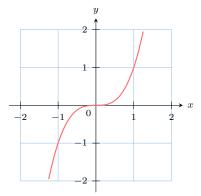
 Δn swer:

- **Injectivity**: The function is **not injective**. The inputs 1 and 2 both map to the same output, p.
- Surjectivity: The function is surjective. The range is $\{p, q, r\}$, which is the same as the codomain B.
- **Bijectivity**: The function is **not bijective** because it is not injective.

A.5.2 APPLYING THE HORIZONTAL LINE TEST

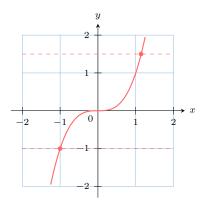
Ex 89: Consider the function $f:\mathbb{R}\longrightarrow\mathbb{R}$, graphed below.

$$x \longmapsto x^3$$



Determine if the function f is injective, surjective, and/or bijective. Justify your answers.

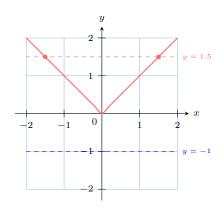
Answer:



Using the horizontal line test, any horizontal line drawn on the graph intersects the curve exactly once.

- **Injective**: Yes, because every horizontal line intersects the graph at most once.
- Surjective: Yes, because every horizontal line (for all $y \in \mathbb{R}$) intersects the graph at least once.
- **Bijective**: Yes, because the function is both injective and surjective.

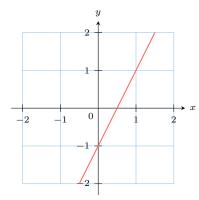
Answer:



• Injective: No. A horizontal line, for example at y = 1.5, intersects the graph at two points. This fails the horizontal line test for injectivity.

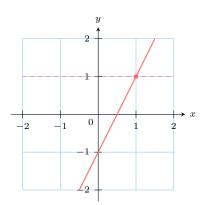
- Surjective: No. The range of the function is $[0, \infty)$, which is not equal to the codomain \mathbb{R} . For example, a horizontal line at y = -1 (which is in the codomain) does not intersect the graph at all, meaning -1 has no preimage.
- Bijective: No, because the function is neither injective nor surjective.

Ex 90: Consider the function $h: \mathbb{R} \longrightarrow \mathbb{R}$, graphed below. $x \longmapsto 2x-1$



Determine if the function h is injective, surjective, and/or bijective. Justify your answers.

Answer:

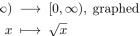


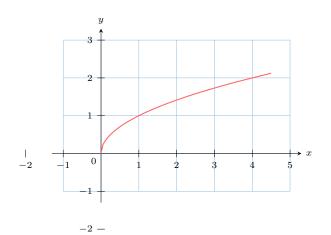
Any horizontal line drawn on the graph will intersect the line at exactly one point.

- Injective: Yes, because every horizontal line intersects the graph at most once.
- Surjective: Yes, because every horizontal line intersects the graph at least once.
- Bijective: Yes, because it is both injective and surjective.

Ex 91: Consider the function $f:[0,\infty) \longrightarrow [0,\infty)$, graphed

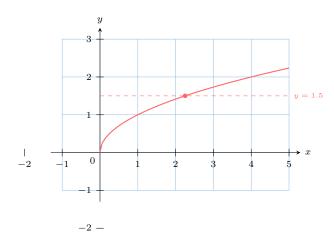
below.





Determine if the function f is injective, surjective, and/or bijective. Justify your answers.

Answer:



We apply the horizontal line test, considering that the codomain is $[0,\infty)$. This means we only need to test horizontal lines where $y \ge 0$.

- Injective: Yes. Any horizontal line with $y \geq 0$ intersects the graph at exactly one point. Since it intersects at most once, the function is injective.
- Surjective: Yes. Any horizontal line with $y \geq 0$ (i.e., for any value in the codomain) intersects the graph at least once. The range is equal to the codomain.
- Bijective: Yes, because the function is both injective and surjective.

B OPERATIONS ON FUNCTIONS

B.1 ALGEBRA OF FUNCTIONS

B.1.1 ADDING, SUBTRACTING, AND MULTIPLYING FUNCTIONS

Ex 92: For f(x) = 2x + 2 and g(x) = 3 - x, find in simplest form:

1.
$$f(3) + g(3) = \boxed{8}$$

2.
$$f(-1) + g(-1) = \boxed{4}$$

3.
$$f(x) + g(x) = \boxed{x+5}$$

4.
$$g(x) + f(x) = x + 5$$

Answer:

1.
$$f(3) + g(3) = (2 \times 3 + 2) + (3 - 3)$$

= $(6 + 2) + 0$
= $8 + 0$
= 8

2.
$$f(-1) + g(-1) = (2 \times (-1) + 2) + (3 - (-1))$$

= $(-2 + 2) + (3 + 1)$
= $0 + 4$
= 4

3.
$$f(x) + g(x) = (2x + 2) + (3 - x)$$

= $2x + 2 + 3 - x$
= $x + 5$

4.
$$g(x) + f(x) = (3 - x) + (2x + 2)$$

= $3 - x + 2x + 2$
= $x + 5$

Ex 93: For $f(x) = x^2 - 2$ and g(x) = x - 2, find in simplest form:

1.
$$f(0) + g(0) = \boxed{-4}$$

2.
$$f(-2) + g(-2) = \boxed{-2}$$

3.
$$f(x) + g(x) = x^2 + x - 4$$

4.
$$f(x) - g(x) = x^2 - x$$

Answer:

1.
$$f(0) + g(0) = (0^2 - 2) + (0 - 2)$$

= $(-2) + (-2)$
= -4

2.
$$f(-2) + g(-2) = ((-2)^2 - 2) + (-2 - 2)$$

= $(4 - 2) + (-4)$
= $2 - 4$
= -2

3.
$$f(x) + g(x) = (x^2 - 2) + (x - 2)$$

= $x^2 + x - 4$

4.
$$f(x) - g(x) = (x^2 - 2) - (x - 2)$$

= $x^2 - 2 - x + 2$
= $x^2 - x$

Ex 94: Let f(x) = 3x - 2 and $g(x) = x^2$. Find in factorized form:

$$f(x) \times g(x) = \boxed{(3x-2)x^2}$$

Answer:
$$f(x) \times g(x) = (3x - 2) \times x^2$$

= $(3x - 2)x^2$

Ex 95: Let f(x) = 2x + 5 and g(x) = x - 4. Find in factorized form:

$$f(x) \times g(x) = \boxed{(2x+5)(x-4)}$$

Answer:
$$f(x) \times g(x) = (2x+5) \times (x-4)$$

= $(2x+5)(x-4)$

B.1.2 DECOMPOSING FUNCTIONS

EXPRESSIONS

INTO

Ex 96: Find two functions f and g such that $f(x) \times g(x) = (x+3)^2(x-2)$.

$$f(x) = (x+3)^2$$

•
$$g(x) = \boxed{x-2}$$

Answer: One possible pair is $f(x) = (x+3)^2$ and g(x) = x-2, since

$$f(x) \times g(x) = (x+3)^2 \times (x-2).$$

Ex 97: Find two functions f and g such that $f(x) \times g(x) = (x^2 + 4)(3x - 7)$.

$$f(x) = x^2 + 4$$

•
$$g(x) = \boxed{3x - 7}$$

Answer: One possible pair is $f(x) = x^2 + 4$ and g(x) = 3x - 7, since

$$f(x) \times g(x) = (x^2 + 4) \times (3x - 7).$$

Ex 98: Find two functions f and g such that $f(x) + g(x) = (x-2)^2 + \sqrt{x}$.

•
$$f(x) = (x-2)^2$$

•
$$g(x) = \sqrt{x}$$

Answer: One possible pair is $f(x) = (x-2)^2$ and $g(x) = \sqrt{x}$, since

$$f(x) + g(x) = (x - 2)^2 + \sqrt{x}$$
.

Ex 99: Find two functions f and g such that $f(x) + g(x) = \frac{1}{x} + (x+1)^2$.

•
$$f(x) = \boxed{\frac{1}{x}}$$

$$g(x) = (x+1)^2$$

Answer: One possible pair is $f(x) = \frac{1}{x}$ and $g(x) = (x+1)^2$, since

$$f(x) + g(x) = \frac{1}{x} + (x+1)^2.$$

B.1.3 OPERATIONS ON FUNCTIONS AND THEIR DOMAINS

Ex 100: Let the functions f and g be defined by the rules $f(x) = \sqrt{x+2}$ and $g(x) = \sqrt{3-x}$. Let h = f + g.

- 1. Find the domain of f and the domain of g.
- 2. Find the domain of the combined function h.
- 3. Calculate h(-1).

Answer:

1. **Domain of f**: We need $x + 2 \ge 0 \Leftrightarrow x \ge -2$. The domain of f is $[-2, \infty)$.

Domain of g: We need $3 - x \ge 0 \Leftrightarrow 3 \ge x$. The domain of g is $(-\infty, 3]$.

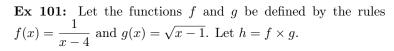
- 2. The domain of h = f + g is the intersection of the domains of f and g. We need values of x that are both greater than or equal to -2 AND less than or equal to 3. The domain of h is [-2, 3].
- 3. To calculate h(-1), we first check that -1 is in the domain of h. Since $-2 \le -1 \le 3$, it is valid.

$$h(-1) = f(-1) + g(-1)$$

$$= \sqrt{-1+2} + \sqrt{3-(-1)}$$

$$= \sqrt{1} + \sqrt{4}$$

$$= 1 + 2 = 3$$



- 1. Find the domain of f and the domain of g.
- 2. Find the domain of the combined function h.
- 3. Calculate h(5).

Answer:

1. **Domain of f**: The denominator cannot be zero, so $x - 4 \neq 0 \Leftrightarrow x \neq 4$. The domain of f is $\mathbb{R} \setminus \{4\}$.

Domain of g: The expression in the square root must be non-negative, so $x - 1 \ge 0 \Leftrightarrow x \ge 1$. The domain of g is $[1, \infty)$.

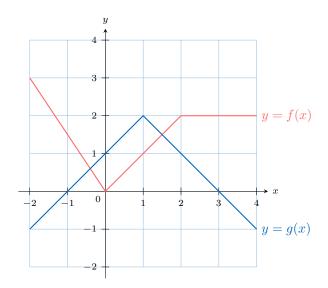
- 2. The domain of $h = f \cdot g$ is the intersection of the domains of f and g. We need all numbers x such that $x \ge 1$ AND $x \ne 4$. The domain of h is $[1, 4) \cup (4, \infty)$.
- 3. To calculate h(5), we first check that 5 is in the domain of h. Since $5 \ge 1$ and $5 \ne 4$, it is valid.

$$h(5) = f(5) \times g(5)$$

$$= \left(\frac{1}{5-4}\right) \times \sqrt{5-1}$$

$$= \left(\frac{1}{1}\right) \times \sqrt{4}$$

$$= 1 \times 2 = \mathbf{2}$$



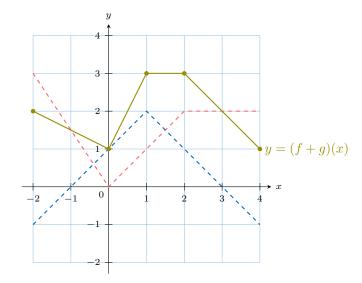
Plot the graph of the function f + g.

Answer: To plot the graph of (f+g)(x), we add the y-coordinates of the functions f and g at several key x-values.

First, we create a table of values by reading the points from the graphs:

\boldsymbol{x}	-2	0	1	2	4
f(x)	3	0	1	2	2
g(x)	-1	1	2	1	-1
(f+g)(x)	2	1	3	3	1

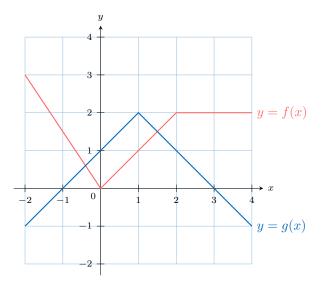
Now, we plot the new points (-2,2), (0,1), (1,3), (2,3), and (4,1) and connect them with line segments.



B.1.4 GRAPHICAL COMBINATION OF FUNCTIONS

Ex 102: The graphs of two functions, f and g, are shown below.

Ex 103: The graphs of two functions, f and g, are shown below.



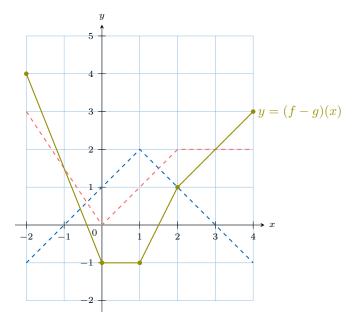
Plot the graph of the function f - g.

Answer: To plot the graph of (f - g)(x), we subtract the y-coordinates of the function g from the y-coordinates of the function f at several key x-values.

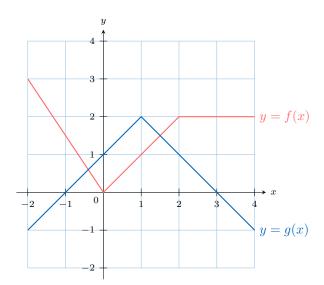
First, we create a table of values by reading the points from the graphs:

\boldsymbol{x}	-2	0	1	2	4
f(x)	3	0	1	2	2
g(x)	-1	1	2	1	-1
(f-g)(x)	4	-1	-1	1	3

Now, we plot the new points (-2,4), (0,-1), (1,-1), (2,1), and (4,3) and connect them with line segments.



Ex 104: The graphs of two functions, f and g, are shown below.

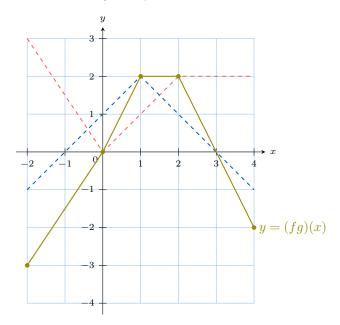


Plot the graph of the function $f \times g$.

Answer: To plot the graph of (fg)(x), we multiply the y-coordinates of the functions f and g at several key x-values. First, we create a table of values by reading the points from the graphs:

\boldsymbol{x}	-2	0	1	2	4
f(x)	3	0	1	2	2
g(x)	-1	1	2	1	-1
$(f \times g)(x)$	-3	0	2	2	-2

Now, we plot the new points (-2, -3), (0, 0), (1, 2), (2, 2), and (4, -2) and connect them. Note that since we are multiplying linear functions, the resulting graph between these points will be composed of parabolic curves, not straight lines. We sketch a smooth curve through the points.



B.2 COMPOSITION OF FUNCTIONS

B.2.1 EVALUATING COMPOSITE FUNCTIONS

Ex 105: For f(x) = 2x + 2 and g(x) = 3 - x, find in simplest form:

1.
$$f(g(3)) = \boxed{2}$$

2.
$$f(g(-1)) = \boxed{10}$$

3.
$$f(g(x)) = 8 - 2x$$

4.
$$g(f(x)) = 1 - 2x$$

Answer:

1.
$$f(g(3)) = f(3-3)$$

= $f(0)$
= $2 \times 0 + 2$
= 2

2.
$$f(g(-1)) = f(3 - (-1))$$

= $f(4)$
= $2 \times 4 + 2$
= $8 + 2$
= 10

3.
$$f(g(x)) = f(3-x)$$

= $2(3-x) + 2$
= $6-2x+2$
= $8-2x$

4.
$$g(f(x)) = g(2x + 2)$$

= $3 - (2x + 2)$
= $3 - 2x - 2$
= $1 - 2x$

Ex 106: For $f(x) = x^2 + 2x$ and g(x) = 2 - x, find in simplest form:

1.
$$f(g(3)) = -1$$

2.
$$f(g(-1)) = \boxed{15}$$

3.
$$f(g(x)) = x^2 - 6x + 8$$

4.
$$g(f(x)) = 2 - x^2 - 2x$$

Answer:

1.
$$f(g(3)) = f(2-3)$$

= $f(-1)$
= $(-1)^2 + 2 \times (-1)$
= $1-2$
= -1

2.
$$f(g(-1)) = f(2 - (-1))$$

= $f(3)$
= $3^2 + 2 \times 3$
= $9 + 6$
= 15

3.
$$f(g(x)) = f(2-x)$$

 $= (2-x)^2 + 2(2-x)$
 $= (4-4x+x^2) + (4-2x)$
 $= x^2 - 6x + 8$

4.
$$g(f(x)) = g(x^2 + 2x)$$

= $2 - (x^2 + 2x)$
= $2 - x^2 - 2x$

Ex 107: For f(x) = 3x - 5, find in simplest form:

1.
$$f(f(-1)) = \boxed{-29}$$

2.
$$f(f(x)) = 9x - 20$$

Answer:

1.
$$f(f(-1)) = f(3 \times (-1) - 5)$$

= $f(-8)$
= $3 \times (-8) - 5$
= $-24 - 5$
= -29

2.
$$f(f(x)) = f(3x - 5)$$
 (substituting x with $(3x - 5)$)
= $3(3x - 5) - 5$
= $9x - 15 - 5$
= $9x - 20$

B.2.2 DECOMPOSING FUNCTIONS INTO COMPOSITIONS

Ex 108: Find two functions f and g such that $f(g(x)) = \sqrt{2x-1}$ and $g(x) \neq x$.

•
$$f(x) = \sqrt{x}$$

•
$$g(x) = \boxed{2x-1}$$

Answer: One possible pair is $f(x) = \sqrt{x}$ and g(x) = 2x - 1, since

$$f(g(x)) = f(2x - 1)$$
$$= \sqrt{2x - 1}.$$

Ex 109: Find two functions f and g such that $f(g(x)) = (x+2)^5$ and $g(x) \neq x$.

•
$$f(x) = x^5$$

$$g(x) = \boxed{x+2}$$

Answer: One possible pair is $f(x) = x^5$ and g(x) = x + 2, since

$$f(g(x)) = f(x+2)$$

= $(x+2)^5$.

Ex 110: Find two functions f and g such that $f(g(x)) = \frac{1}{x^2 + 1}$ and $g(x) \neq x$.

•
$$f(x) = \boxed{\frac{1}{x}}$$

$$g(x) = x^2 + 1$$

Answer: One possible pair is $f(x) = \frac{1}{x}$ and $g(x) = x^2 + 1$, since

$$f(g(x)) = f(x^{2} + 1)$$
$$= \frac{1}{x^{2} + 1}.$$

Ex 111: Find two functions f and g such that $f(g(x)) = (x^3 - 2)^{-4}$ and $g(x) \neq x$.

$$g(x) = x^3 - 2$$

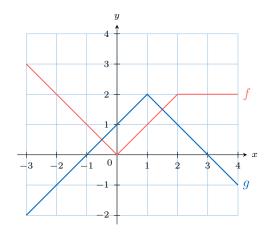
Answer: One possible pair is $f(x) = x^{-4}$ and $g(x) = x^3 - 2$, since

$$f(g(x)) = f(x^3 - 2)$$

= $(x^3 - 2)^{-4}$.

B.2.3 EVALUATING COMPOSITE FUNCTIONS FROM GRAPHS

Ex 112: The graphs of two functions, f and g, are shown below.



Use the graphs to find the values of:

1.
$$(f \circ g)(1) = 2$$

2.
$$(g \circ f)(-2) = \boxed{1}$$

3.
$$(f \circ f)(0) = 0$$

Answer:

- 1. To find $(f \circ g)(1) = f(g(1))$:
 - First, find g(1) from the graph of g. At x = 1, g(1) = 2.
 - Now, find f(2) from the graph of f. At x = 2, f(2) = 2.

So, $(f \circ g)(1) = 2$.

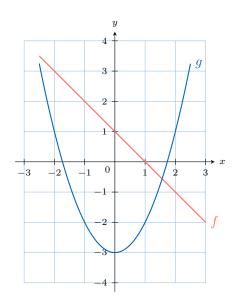
- 2. To find $(g \circ f)(-2) = g(f(-2))$:
 - First, find f(-2) from the graph of f. At x = -2, f(-2) = 2.
 - Now, find g(2) from the graph of g. At x = 2, g(2) = 1.

So, $(g \circ f)(-2) = 1$.

- 3. To find $(f \circ f)(0) = f(f(0))$:
 - First, find f(0) from the graph of f. At x = 0, f(0) = 0.
 - Now, find f(0) again. f(0) = 0.

So, $(f \circ f)(0) = 0$.

Ex 113: The graphs of two functions, f and g, are shown.



Find the values of:

1.
$$(f \circ q)(2) = 0$$

2.
$$(g \circ f)(-1) = \boxed{1}$$

Answer:

- 1. To find $(f \circ g)(2) = f(g(2))$:
 - First, from the graph of g, we locate x = 2 and read the corresponding y-value, which is g(2) = 1.
 - Now we find f(1) from the graph of f. At x = 1, we read the y-value, which is f(1) = 0.

So,
$$(f \circ g)(2) = 0$$
.

- 2. To find $(g \circ f)(-1) = g(f(-1))$:
 - First, from the graph of f, we locate x = -1 and read the y-value, which is f(-1) = 2.
 - Now we find g(2) from the graph of g. At x = 2, we read the y-value, which is g(2) = 1.

So,
$$(g \circ f)(-1) = 1$$
.

B.2.4 SOLVING EQUATIONS WITH COMPOSITE FUNCTIONS

Ex 114: Let $f(x) = x^2 - 3$ and g(x) = 2x - 1. Find all values of x such that $(f \circ g)(x) = 6$.

Answer: First, we find an expression for the composite function $(f \circ g)(x)$.

$$(f \circ q)(x) = f(q(x)) = f(2x-1) = (2x-1)^2 - 3$$

Now, we set this expression equal to 6 and solve for x.

$$(2x-1)^{2} - 3 = 6$$
$$(2x-1)^{2} = 9$$
$$\sqrt{(2x-1)^{2}} = \pm \sqrt{9}$$
$$2x - 1 = \pm 3$$

This gives two separate linear equations:

- $2x 1 = 3 \Leftrightarrow 2x = 4 \Leftrightarrow x = 2$
- $2x 1 = -3 \Leftrightarrow 2x = -2 \Leftrightarrow x = -1$

The solutions are x = 2 and x = -1.

Ex 115: Let f(x) = 2x - 5 and $g(x) = \frac{x+1}{3}$. Find all values of x such that $(g \circ f)(x) = x$.

Answer: First, we find an expression for the composite function $(g \circ f)(x)$.

$$(g \circ f)(x) = g(f(x)) = g(2x - 5) = \frac{(2x - 5) + 1}{3} = \frac{2x - 4}{3}$$

Now, we set this expression equal to x and solve.

$$\frac{2x-4}{3}=x$$

$$2x-4=3x \qquad \text{(multiply both sides by 3)}$$

$$-4=3x-2x \quad \text{(subtract 2x from both sides)}$$

$$x=-4$$

The solution is x = -4.

Ex 116: Let $f(x) = x^2 - 4x + 5$ and g(x) = x - 1. Find all values of x such that $(f \circ g)(x) = 2$.

Answer: First, we find an expression for the composite function $(f \circ g)(x)$.

$$(f \circ g)(x) = f(g(x))$$

$$= f(x-1)$$

$$= (x-1)^2 - 4(x-1) + 5$$

$$= (x^2 - 2x + 1) - (4x - 4) + 5 \quad \text{(expand the terms)}$$

$$= x^2 - 2x + 1 - 4x + 4 + 5$$

$$= x^2 - 6x + 10 \quad \text{(simplify)}$$

Now, we set this expression equal to 2 and solve the resulting quadratic equation.

$$x^2 - 6x + 10 = 2$$

 $x^2 - 6x + 8 = 0$ (subtract 2 from both sides)
 $(x - 2)(x - 4) = 0$ (factor the quadratic)

This gives two solutions:

$$x - 2 = 0 \Leftrightarrow x = 2$$

$$x - 4 = 0 \Leftrightarrow x = 4$$

The solutions are x = 2 and x = 4.

B.3 INVERSE FUNCTIONS

B.3.1 FINDING AND CHECKING INVERSES

Ex 117:

1. Find the inverse of f(x) = x + 3.

$$f^{-1}(x) = \boxed{x - 3}$$

2. Evaluate

$$f^{-1}(f(x)) = \boxed{x}$$
$$f(f^{-1}(x)) = \boxed{x}$$

Answer:

1. Set
$$y = x + 3$$
.

$$y = x + 3$$
$$x = y - 3$$

So, the inverse function is $f^{-1}(x) = x - 3$.

$$f^{-1}(f(x)) = f^{-1}(x+3)$$

= $(x+3) - 3$
= x

3.

$$f(f^{-1}(x)) = f(x-3)$$

= $(x-3) + 3$
= x

Ex 118:

1. Find the inverse of f(x) = 4x - 8.

$$f^{-1}(x) = \boxed{\frac{x+8}{4}}$$

2. Evaluate

$$f^{-1}(f(x)) = \boxed{x}$$
$$f(f^{-1}(x)) = \boxed{x}$$

Answer:

1. Set y = 4x - 8.

$$y = 4x - 8$$
$$y + 8 = 4x$$
$$x = \frac{y + 8}{4}$$

So, the inverse function is $f^{-1}(x) = \frac{x+8}{4}$.

2.

$$f^{-1}(f(x)) = f^{-1}(4x - 8)$$

$$= \frac{(4x - 8) + 8}{4}$$

$$= \frac{4x}{4}$$

$$= x$$

3.

$$f(f^{-1}(x)) = f\left(\frac{x+8}{4}\right)$$
$$= 4 \times \frac{x+8}{4} - 8$$
$$= (x+8) - 8$$
$$= x$$

Ex 119:

1. Find the inverse of $f(x) = \frac{x}{2} - 3$.

$$f^{-1}(x) = 2(x+3)$$

2. Evaluate

$$f^{-1}(f(x)) = \boxed{x}$$
$$f(f^{-1}(x)) = \boxed{x}$$

Answer:

1. Set
$$y = \frac{x}{2} - 3$$
.

$$y = \frac{x}{2} - 3$$

$$y + 3 = \frac{x}{2}$$

$$2(y + 3) = x$$

$$x = 2(y + 3)$$

So, the inverse function is $f^{-1}(x) = 2(x+3)$.

2.

$$f^{-1}(f(x)) = f^{-1}\left(\frac{x}{2} - 3\right)$$
$$= 2\left(\frac{x}{2} - 3 + 3\right)$$
$$= 2 \times \frac{x}{2}$$
$$= x$$

3.

$$f(f^{-1}(x)) = f(2(x+3))$$

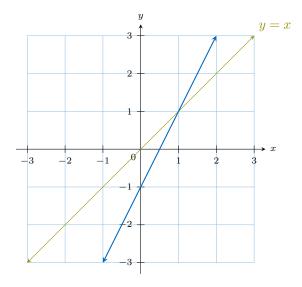
$$= \frac{2(x+3)}{2} - 3$$

$$= (x+3) - 3$$

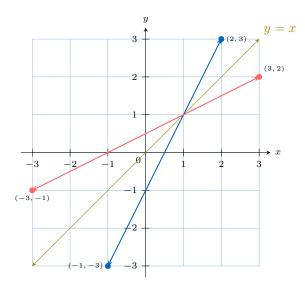
$$= x$$

B.3.2 GRAPHING THE INVERSE FUNCTION BY REFLECTION

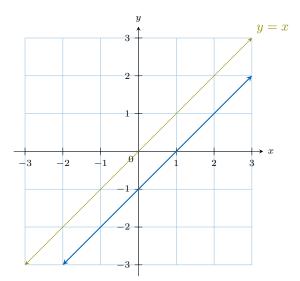
Ex 120: Draw the graph of the inverse function of the blue graph:



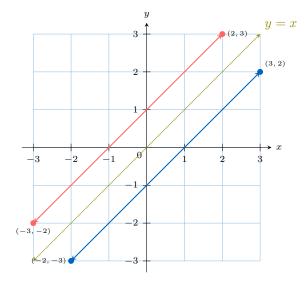
Answer: To draw the inverse, notice that the graph of f^{-1} is the reflection of the graph of f across the line y=x. You can plot two points on the blue line (for example, (-1,-3) and (2,3)), then swap their coordinates to get points (-3,-1) and (3,2) on the inverse. Draw the line passing through these points: this is $y=\frac{x+1}{2}$, shown below in red.



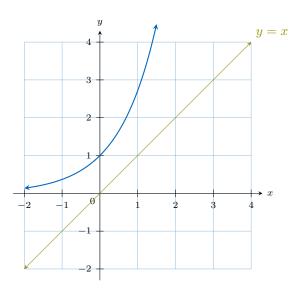
Ex 121: Draw the graph of the inverse function of the blue graph:



Answer: To draw the inverse, notice that the graph of f^{-1} is the reflection of the graph of f across the line y = x. For instance, the blue line contains the points (-2, -3) and (3, 2). Swap their coordinates to get (-3, -2) and (2, 3) on the inverse. Draw the line passing through these points: this is y = x + 1, shown below in red.



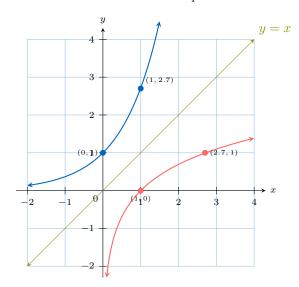
Ex 122: Draw the graph of the inverse function of the blue graph:



Answer: To draw the inverse graph, plot a few symmetric points:

- Take points from the blue curve, such as (0,1) and (1,2.7).
- Find their symmetric points with respect to the line y = x, i.e., swap their coordinates: (1,0) and (2.7,1).
- Plot these new points.
- Draw a smooth curve through the symmetric points; this is the graph of the inverse function.

You do **not** need to know the exact equation of the curve!



Remark: The inverse graph is obtained by reflecting each point of the blue curve across the line y = x.

B.3.3 FINDING INVERSES OF VARIOUS FUNCTION TYPES

Ex 123: Let the function f be defined by

$$f: [1, \infty) \longrightarrow [2, \infty)$$

 $x \longmapsto (x-1)^2 + 2$

- 1. State the domain and range of f.
- 2. Find an expression for $f^{-1}(x)$.
- 3. State the domain and range of f^{-1} .

Answer:

- 1. The vertex of the parabola is at (1,2). Since the domain is $x \ge 1$, we are on the right arm of the parabola which opens upwards.
 - Domain: Given as $[1, \infty)$.
 - Range: The minimum value is at the vertex, so the range is $[2, \infty)$.
- 2. To find the inverse, we set y = f(x) and solve for x.

$$y = (x-1)^{2} + 2$$
$$y - 2 = (x-1)^{2}$$
$$\pm \sqrt{y-2} = x - 1$$

Since the domain of f is $x \ge 1$, the range of f^{-1} must be $y \ge 1$. To ensure this, we must choose the positive root.

$$\sqrt{y-2} = x - 1 \Leftrightarrow x = 1 + \sqrt{y-2}$$

Swapping variables gives $f^{-1}(x) = 1 + \sqrt{x-2}$.

- 3. The domain and range of the inverse are swapped from the original function.
 - **Domain of** f^{-1} : This is the range of f, which is $[2,\infty)$.
 - Range of f^{-1} : This is the domain of f, which is $[1, \infty)$.

Ex 124: Let the function f be defined by $f(x) = \frac{2x+1}{x-3}$ for $x \neq 3$.

- 1. Find an expression for $f^{-1}(x)$.
- 2. Solve the equation $f^{-1}(x) = 4$.

Answer:

1. We set y = f(x) and solve for x.

$$y = \frac{2x+1}{x-3}$$

$$y(x-3) = 2x+1 \quad \text{(multiply by } x-3\text{)}$$

$$yx - 3y = 2x+1$$

$$yx - 2x = 3y+1 \quad \text{(collect x-terms)}$$

$$x(y-2) = 3y+1 \quad \text{(factor out x)}$$

$$x = \frac{3y+1}{y-2}$$

Swapping the variables gives $f^{-1}(x) = \frac{3x+1}{x-2}$.

2. We now solve the equation $f^{-1}(x) = 4$.

$$\frac{3x+1}{x-2} = 4$$

$$3x+1 = 4(x-2)$$

$$3x+1 = 4x-8$$

$$9 = x$$

The solution is x = 9.

Ex 125: Consider the function $f(x) = \frac{5}{x}$ for $x \neq 0$.

1. Find the inverse function, $f^{-1}(x)$.

2. Compare f(x) and $f^{-1}(x)$ and explain what it means for a function to be its own inverse.

Answer:

1. We set y = f(x) and solve for x.

$$y = \frac{5}{x}$$
$$xy = 5$$
$$x = \frac{5}{y}$$

Swapping the variables gives $f^{-1}(x) = \frac{5}{x}$.

2. By comparing the expressions, we see that $f(x) = f^{-1}(x)$. A function that is its own inverse is called a **self-inverse** function or an **involution**. This means that applying the function twice returns the original input: $(f \circ f)(x) = x$. Graphically, this implies that the graph of the function is perfectly symmetric about the line y = x.