A FUNDAMENTAL CONCEPTS OF FUNCTIONS

A.1 WHAT IS A FUNCTION?

A.1.1 WRITING FUNCTIONS: LEVEL 1

Ex 1: Consider the following calculation program:

- 1. Choose a number.
- 2. Subtract 5 from the chosen number.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

Ex 2: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by three.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

Ex 3: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by five.
- 3. Subtract 2 from the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

Ex 4: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by -2.
- 3. Add 5 to the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

A.1.2 WRITING FUNCTIONS: LEVEL 2

Ex 5: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by itself.
- 3. Subtract 1 from the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

Ex 6: Consider the following calculation program:

- 1. Choose a number.
- 2. Square the chosen number.
- 3. Multiply the result by 2.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

Ex 7: Consider the following calculation program:

- 1. Choose a number.
- 2. Subtract 1 from the chosen number.
- 3. Multiply the result by the original number chosen.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

A.1.3 CALCULATING f(x)

Ex 8: For f(x) = x + 3,

$$f(4) = \boxed{}$$

Ex 9: For f(x) = 2x - 1,

$$f(5) =$$

Ex 10: For f(x) = 3x + 2,

$$f(2) =$$

Ex 11: For $f(x) = x^2 - 1$,

$$f(3) =$$

Ex 12: For f(x) = 5x - 3,

$$f(1) =$$

Ex 13: For $f(x) = \frac{x}{2} + 4$,

$$f(6) =$$

Ex 14: For f(x) = x - 5,

$$f(10) = \Box$$

Ex 15: For f(x) = 2x - 5,

$$f(-2) =$$

Ex 16: For f(x) = -x + 4,

$$f(-3) = \square$$

Ex 17: For f(x) = 3x - 7,

$$f(-1) =$$

Ex 18: For $f(x) = x^2 - 2x$,

$$f(-2) =$$

Ex 19: For f(x) = 2x + 3,

$$f(-3) =$$

Ex 20: For $f(x) = \frac{x}{2} - 4$,

$$f(8) =$$

Ex 21: For $f(x) = \frac{3x-5}{2}$,

$$f(-1) =$$

Ex 22: For $f(x) = \frac{x-6}{2} - 3$,

$$f(10) =$$

A.1.4 CALCULATING f(x)

Ex 23: For $f: x \mapsto x + 3$,

$$f(4) = \square$$

Ex 24: For $f: x \mapsto x^2 - 1$,

$$f(2) = \square$$

Ex 25: For $f: x \mapsto (x-1)(x-2)$,

$$f(0) =$$

Ex 26: For $f: x \mapsto x^3$,

$$f(-1) =$$

A.1.5 EVALUATING FUNCTIONS WITH ALGEBRAIC EXPRESSIONS

Ex 27: For the function f(x) = 2x + 3, expand and simplify the expression for f(x + 1).

$$f(x+1) =$$

Ex 28: For the function $f(x) = x^2 - 1$, expand and simplify the expression for f(x - 1).

$$f(x-1) =$$

Ex 29: For the function f(x) = 10 - 3x, expand and simplify the expression for f(x + 2).

$$f(x+2) =$$

Ex 30: For the function $f(x) = x^2 - 1$, expand and simplify the expression for $f(x^2 + 1)$.

$$f(x^2 + 1) =$$

A.1.6 SUBSTITUTING VALUES AND EXPRESSIONS INTO A FUNCTION

Ex 31: For $f: x \mapsto 1 - 3x$, find in simplest form:

- 1. f(-2) =
- 2. f(3) =
- 3. $f(x+1) = \boxed{}$
- 4. $f(x^2) =$

Ex 32: For $f: x \mapsto x^2$, find in simplest form:

- 1. $f(3) = \Box$
- 2. f(-1) =
- 3. f(-x) =
- 4. f(x+1) =
- 5. f(x+2) =
- 6. f(2x) =

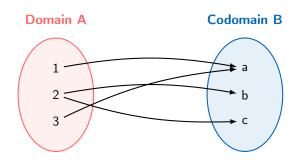
Ex 33: For $g: x \mapsto x^2 - 2x + 1$, find in simplest form:

- 1. $g(3) = \boxed{}$
- 2. g(-1) =
- 3. $g(-x) = \boxed{}$
- 4. g(x+1) =
- 5. $g(x+2) = \boxed{}$
- 6. g(2x) =

A.1.7 SOLVING LINEAR EQUATIONS FOR f(x)=y

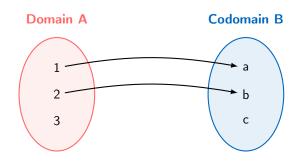
Ex 34: Let f(x) = 3x + 12. Find all x such that f(x) = 0. Justify your answer.

Ex 35: Let f(x) = 2x - 18. Find all x such that f(x) = 0. Justify your answer.

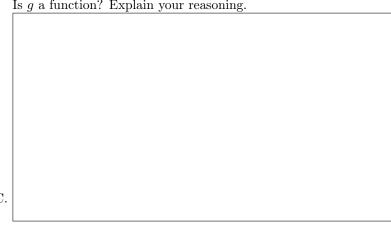

Ex 36: Let $f(x) = 2x + 20$. Find all x such that $f(x) = 10$. Justify your answer.	
	Ex 40: Let $f: x \mapsto x^2 - 6x + 8$. Find all x such that $f(x) = 0$. Justify your answer.
Ex 37: Let $f(x) = -6x + 7$. Find all x such that $f(x) = 2$. Justify your answer.	
	Ex 41: Let $f(x) = x^2 - 2x + 5$. Find all real numbers x such that $f(x) = 1$. Justify your answer.
A.1.8 FINDING PREIMAGES	
Ex 38: Let $f: x \mapsto \frac{4x+1}{x-2}$. Find the value of x for which $f(x) = 3$. Justify your answer.	
	A.1.9 ANALYZING LINEAR MODELS IN CONTEXT
	Ex 42: The value of a laptop t years after purchase is given by $V(t) = 1800 - 300t$ dollars. 1. Find $V(3)$ State what this value means The original purchase price is \$900. The laptop depreciates by \$900 per year.
Ex 39: Let $f: x \mapsto \sqrt{2x+5}$. Find the value of x such that $f(x) = 3$. Justify your answer.	☐ The value of the laptop after 3 years is \$900. 2. Find t when $V(t) = 600$.

www.commeunjeu.com 3

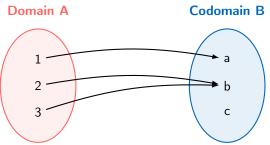
Explain what this represents. \square After 4 years, the laptop is worth \$600. \square The depreciation rate is \$4 per year. \square The original price was \$600 after 4 years. 3. Find the original purchase price of the laptop. The height of a plant t weeks after planting is given by H(t) = 5 + 2t cm. 1. Find H(4)State what this value means \square The initial height is 13 cm. \square The plant grows by 13 cm per week. \square The height of the plant after 4 weeks is 13 cm. 2. Find t when H(t) = 15. Explain what this represents. \square After 5 weeks, the plant is 15 cm tall. \square The growth rate is 5 cm per week. \square The initial height was 15 cm after 5 weeks. 3. Find the initial height of the plant. The temperature of water t minutes after starting to heat it is given by T(t) = 25 + 15t degrees Celsius. 1. Find T(3)State what this value means \square The temperature of the water after 3 minutes is 70°C. \square The initial temperature is 70°C. \square The water heats up by 70 degrees per minute. 2. Find t when T(t) = 100. Explain what this represents. \square The water is at 100°C after 100 minutes. \square The heating rate is 5 degrees per minute. ☐ After 5 minutes, the water reaches boiling point at 100°C. 3. Find the initial temperature of the water.

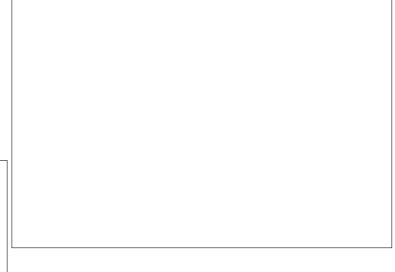

A.1.10 IDENTIFYING FUNCTIONS FROM MAPPINGS

Ex 45: A rule f maps elements from the set $A = \{1, 2, 3\}$ to the set $B = \{a, b, c\}$. The mappings are shown in the diagram below.



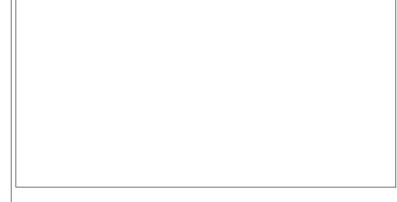
Is f a function? Explain your reasoning.


Ex 46: A rule g maps elements from the set $A = \{1, 2, 3\}$ to the set $B = \{a, b, c\}$. The mappings are shown in the diagram below.


Is g a function? Explain your reasoning.

Ex 47: A rule h maps elements from the set $A = \{1, 2, 3\}$ to the set $B = \{a, b, c\}$. The mappings are shown in the diagram below.

Is h a function? Explain your reasoning.


Ex 50: Consider the function defined as $f: \mathbb{R} \longrightarrow \mathbb{R}$. $x \longmapsto x^2 + 1$

- 1. What is the domain of f?
- 2. What is the codomain of f?
- 3. What is the image of x = -3?
- 4. What are the preimage(s) of y = 5?

A.1.11 DOMAIN, CODOMAIN, AND NOTATION

Ex 48: Consider the function defined as $f: \mathbb{Z} \longrightarrow \mathbb{Z}$. $x \longmapsto x-5$

- 1. What is the domain of f?
- 2. What is the codomain of f?
- 3. What is the image of x = 7?
- 4. What is the preimage of y = -3?

Ex 49: A function g has the domain $\mathbb{N}=\{1,2,3,\ldots\}$ and codomain \mathbb{N} . The rule is "divide the input by 2".

- 1. Write the function using formal notation.
- 2. Explain why this rule does not define a valid function $g: \mathbb{N} \to \mathbb{N}$.
- **Ex 51:** A rule h is defined by $h: \mathbb{Z} \longrightarrow \mathbb{R}$. $x \longmapsto \sqrt{x}$
- 1. State the domain and codomain of h.
- 2. Explain why this rule does not define a valid function.

	\square $[0,+\infty)$
	$\Box \ (-\infty,0)$
	A.2.2 FINDING THE NATURAL DOMAIN: LEVEL 2
	MCQ 56: Find the domain of the function $f: x \mapsto \sqrt{2x-4}$.
Ex 52: Let $A = \{-2, -1, 0, 1, 2\}$ and $B = \{0, 1, 2, 3, 4\}$. Consider the function $k: A \longrightarrow B$.	MCQ 57: Find the domain of the function $f: x \mapsto \frac{x}{x-3}$.
$x \longmapsto x^2$	
1. What is the domain of k ?	$\square \ \{x \in \mathbb{R} \mid x \neq 3 \text{ and } x \neq 0\}$
2. What is the codomain of k ?	$\Box \ [3,+\infty)$
3. Find the image for each element in the domain.	$\Box \ (-\infty,3)$
	MCQ 58: Find the domain of the function $f: x \mapsto \frac{1}{x^2 - 9}$.
	$\square \ (-3,3)$
	\square $[0, +\infty)$
	$\square \{x \in \mathbb{R} \mid x \neq -3 \text{ and } x \neq 3\}$
	$ \square x > 3 $
A 2 NATURAL DOMAIN AND DANCE	MCQ 59: Find the domain of the function $f: x \mapsto \sqrt{6-2x}$.
A.2 NATURAL DOMAIN AND RANGE	
A.2.1 FINDING THE NATURAL DOMAIN: LEVEL 1	$\Box \ (-\infty, 3]$
MCQ 53: Find the domain of the function $f: x \mapsto x^2$.	$\Box \ [3, +\infty)$ $\Box \ (-\infty, 6]$
\square \mathbb{R}	
$\square \ \{x \in \mathbb{R} \mid x \neq 0\}$	A.2.3 FINDING THE NATURAL DOMAIN: LEVEL 3
$\Box \ [0,+\infty)$	Ex 60: Find the natural domain of the function $f(x) = \frac{5}{x+3}$.
$\square \ (-\infty,0)$	Express your answer in interval notation. $x + 3$
MCQ 54: Find the domain of the function $f: x \mapsto \frac{1}{x}$.	
\square \mathbb{R}	
$\square \ \{x \in \mathbb{R} \mid x \neq 0\}$	
$\square \ [0,+\infty)$	
$\square \ (-\infty,0)$	
MCQ 55: Find the domain of the function $f: x \mapsto \sqrt{x}$. $\square \mathbb{R}$	

6

www.commeunjeu.com

Ex 61: Find the natural domain of the function $g(x) = \sqrt{x-4}$. Express your answer in interval notation.	
	Ex 65: Find the range of the function $f: \mathbb{R} \longrightarrow \mathbb{R}$. $x \longmapsto (x-2)^2 + 3$
Ex 62: Find the natural domain of the function $h(x) = \frac{1}{\sqrt{x-5}}$. Express your answer in interval notation.	Express your answer in interval notation.
	Ex 66: Find the range of the function $g:[0,\infty)\longrightarrow \mathbb{R}$. $x\longmapsto 5-\sqrt{x}$
	Express your answer in interval notation.
Ex 63: Find the natural domain of the function $k(x) = \sqrt{16 - x^2}$. Express your answer in interval notation.	
	A.3 TABLES OF VALUES
	A.3.1 FILLING TABLES OF VALUES
	Ex 67: For $f(x) = -2x + 1$, fill in the table:
A.2.4 FINDING THE RANGE	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Ex 64: Find the range of the function $f: \mathbb{R} \longrightarrow \mathbb{R}$.	Ex 68: For $f(x) = x^2 - 3x + 1$, fill in the table:

www.commeunjeu.com 7

 $x \longmapsto |x| - 2$

Express your answer in interval notation.

-2

f(x)

0

(-<u>+</u>)

-1

Ex 69: For the rational function $f(x) = \frac{2x}{x+1}$, fill in the table of values.

x	-2	0	1	2	
f(x)					

Ex 70: For the absolute value function g(x) = |x - 2|, fill in the table of values:

x	-1		0		1		2		3	
g(x)										

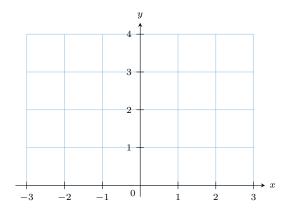
A.3.2 FINDING THE FUNCTION FROM A TABLE

Ex 71: The table below gives some values for the function h(x) = ax + b. Find the values of a and b and complete the table.

x	0	0 1			5
h(x)	-3			1	

Ex 72: The table below gives some values for the function $f(x) = ax^2 + c$. Find the values of a and c and complete the table.

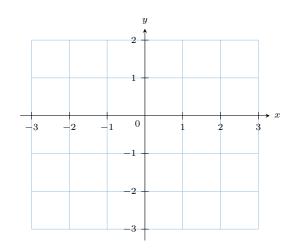
	x	<u> </u>	1	0	2	3	
ĺ	f(x)			-1	11		


A.4 GRAPHS

A.4.1 PLOTTING LINE GRAPHS

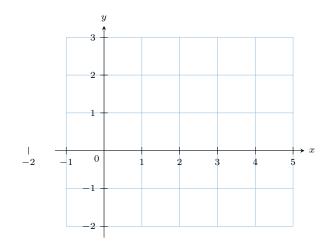
Ex 73: Here is a table of values for the function $f(x) = x^2$:

x		-2	-1	-0.5	0	0.5	1	2
f(x))	4	1	0.25	0	0.25	1	4

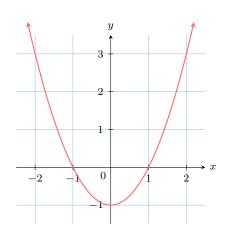

Plot the line graph of f.

Ex 74: Here is a table of values for the function f(x) = 0.5x - 1:

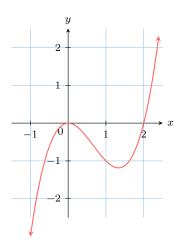
x	-3	-2	-1	0	1	2	3
f(x)	-2.5	-2	-1.5	-1	-0.5	0	0.5


Plot the line graph of f.

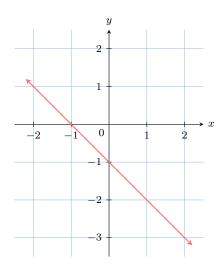
Ex 75: Here is a table of values for the function f(x) = -|x - 2| + 2:


x	-1	0	1	2	3	4	5
f(x)	-1	0	1	2	1	0	-1

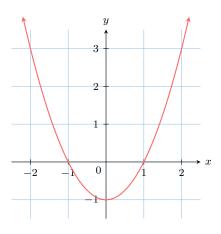
Plot the graph of f.


A.4.2 FINDING f(x)

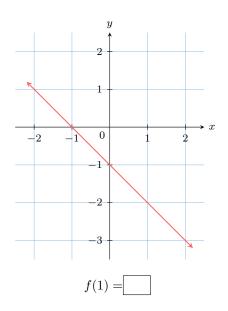
Ex 76: The graph of y = f(x) is:


$$f(2) =$$

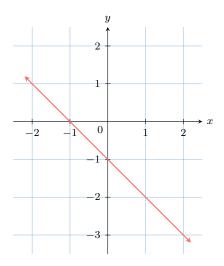
Ex 77: The graph of y = f(x) is:


$$f(1) =$$

Ex 78: The graph of y = f(x) is:

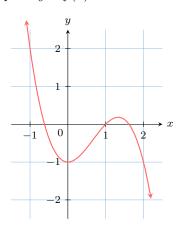

f(-2) =

Ex 79: The graph of y = f(x) is:


$$f(1) =$$

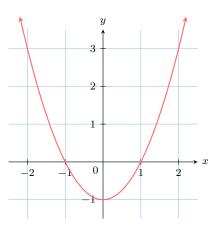
Ex 80: The graph of y = f(x) is:

A.4.3 FINDING INPUTS FROM OUTPUTS ON A GRAPH


Ex 81: The graph of y = f(x) is:

Find all x such that f(x) = -2.

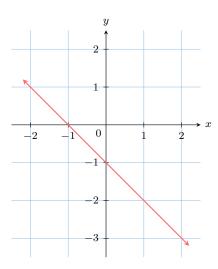
$$x =$$


Ex 82: The graph of y = f(x) is:

Find all x such that f(x) = 2.

$$x =$$

Ex 83: The graph of y = f(x) is:

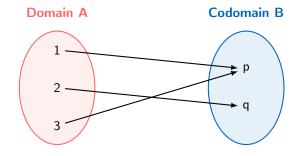


Find all x such that f(x) = 3.

Give your answers in increasing order:

$$x = \boxed{ }$$
 or $x = \boxed{ }$

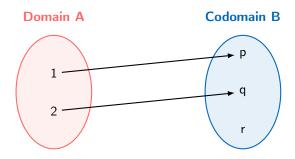
Ex 84: The graph of y = f(x) is:

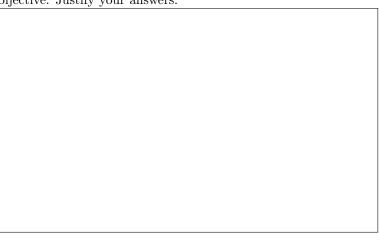

Find all x such that f(x) = 1.

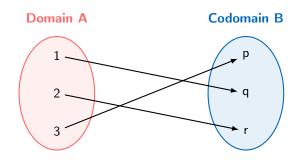
$$x =$$

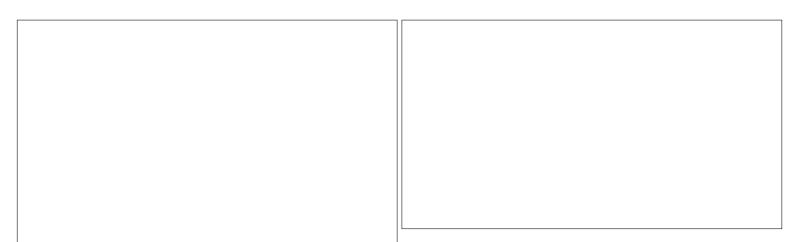
A.5 BIJECTIVE FUNCTIONS

A.5.1 ANALYZING FUNCTION PROPERTIES FROM MAPPING DIAGRAMS

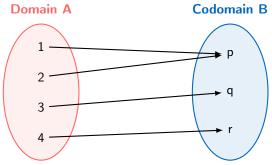

Ex 85: Let $A = \{1, 2, 3\}$ and $B = \{p, q\}$. A function $f: A \to B$ is defined by the mapping diagram below.

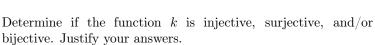

Determine if the function f is injective, surjective, and/or bijective. Justify your answers.

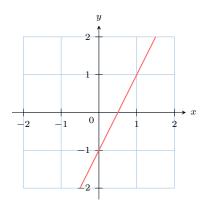

Ex 86: Let $A = \{1, 2\}$ and $B = \{p, q, r\}$. A function $g : A \to B$ is defined by the mapping diagram below.


Determine if the function g is injective, surjective, and/or bijective. Justify your answers.

Ex 87: Let $A = \{1, 2, 3\}$ and $B = \{p, q, r\}$. A function $h: A \to B$ is defined by the mapping diagram below.

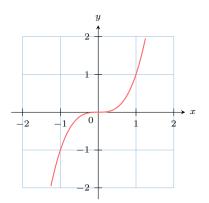



Determine if the function h is injective, surjective, and/or bijective. Justify your answers.

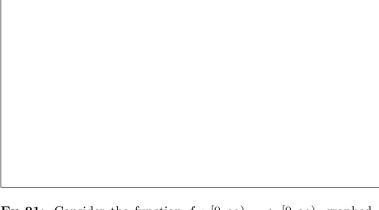


Ex 88: Let $A = \{1, 2, 3, 4\}$ and $B = \{p, q, r\}$. A function $k: A \to B$ is defined by the mapping diagram below.

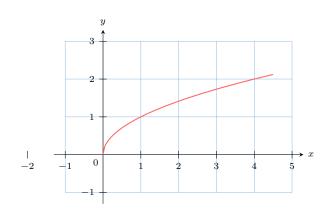
Ex 90: Consider the function $h:\mathbb{R}\longrightarrow\mathbb{R}$, graphed below. $x\longmapsto 2x-1$



Determine if the function h is injective, surjective, and/or bijective. Justify your answers.


ł.

A.5.2 APPLYING THE HORIZONTAL LINE TEST


Ex 89: Consider the function $f:\mathbb{R}\longrightarrow\mathbb{R}$, graphed below. $x\,\longmapsto\,x^3$

Determine if the function f is injective, surjective, and/or bijective. Justify your answers.

Ex 91: Consider the function $f:[0,\infty)\longrightarrow [0,\infty),$ graphed $x\,\longmapsto\, \sqrt{x}$ below.

				s injective,	surjective,	and/or
bijective. Ju	ustny y	our answe	ers.			

B OPERATIONS ON FUNCTIONS

B.1 ALGEBRA OF FUNCTIONS

B.1.1 ADDING, SUBTRACTING, AND MULTIPLYING FUNCTIONS

Ex 92: For f(x) = 2x + 2 and g(x) = 3 - x, find in simplest form:

1.
$$f(3) + g(3) = \boxed{}$$

2.
$$f(-1) + g(-1) = \boxed{}$$

4.
$$g(x) + f(x) =$$

Ex 93: For $f(x) = x^2 - 2$ and g(x) = x - 2, find in simplest form:

1.
$$f(0) + g(0) = \boxed{}$$

2.
$$f(-2) + g(-2) = \boxed{}$$

$$3. \ f(x) + g(x) = \boxed{}$$

4.
$$f(x) - g(x) =$$

Ex 94: Let f(x) = 3x - 2 and $g(x) = x^2$. Find in factorized form:

$$f(x) \times g(x) = \boxed{}$$

Ex 95: Let f(x) = 2x + 5 and g(x) = x - 4. Find in factorized form:

$$f(x) \times g(x) = \boxed{}$$

B.1.2 DECOMPOSING FUNCTIONS

EXPRESSIONS

INTO

Ex 96: Find two functions f and g such that $f(x) \times g(x) = (x+3)^2(x-2)$.

•
$$f(x) =$$

•
$$g(x) =$$

Ex 97: Find two functions f and g such that $f(x) \times g(x) = (x^2 + 4)(3x - 7)$.

•
$$f(x) =$$

•
$$g(x) =$$

Ex 98: Find two functions f and g such that $f(x) + g(x) = (x-2)^2 + \sqrt{x}$.

•
$$f(x) =$$

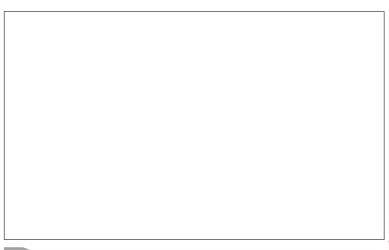
•
$$g(x) =$$

Ex 99: Find two functions f and g such that $f(x) + g(x) = \frac{1}{x} + (x+1)^2$.

•
$$f(x) =$$

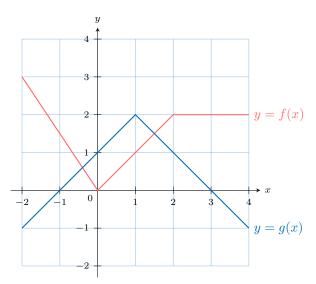
•
$$g(x) =$$

B.1.3 OPERATIONS ON FUNCTIONS AND THEIR DOMAINS

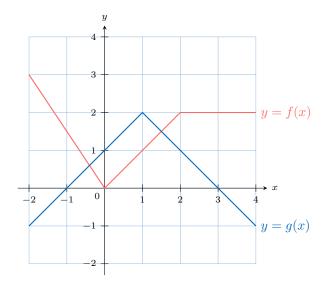

Ex 100: Let the functions f and g be defined by the rules $f(x) = \sqrt{x+2}$ and $g(x) = \sqrt{3-x}$. Let h = f + g.

- 1. Find the domain of f and the domain of g.
- 2. Find the domain of the combined function h.
- 3. Calculate h(-1).

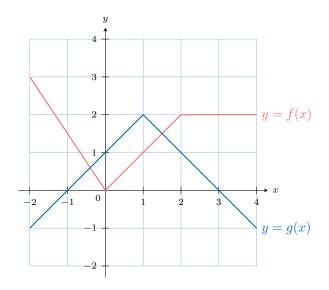
Ex 101: Let the functions f and g be defined by the rules $f(x) = \frac{1}{x-4}$ and $g(x) = \sqrt{x-1}$. Let $h = f \times g$.


1. Find the domain of f and the domain of g.

- 2. Find the domain of the combined function h.
- 3. Calculate h(5).


B.1.4 GRAPHICAL COMBINATION OF FUNCTIONS

Ex 102: The graphs of two functions, f and g, are shown below.


Plot the graph of the function f + g.

Ex 103: The graphs of two functions, f and g, are shown below.

Plot the graph of the function f - g.

Ex 104: The graphs of two functions, f and g, are shown below. and $g(x) \neq x$.

Plot the graph of the function $f \times g$.

B.2 COMPOSITION OF FUNCTIONS

B.2.1 EVALUATING COMPOSITE FUNCTIONS

Ex 105: For f(x) = 2x + 2 and g(x) = 3 - x, find in simplest form:

1.
$$f(g(3)) = \Box$$

2.
$$f(g(-1)) = \boxed{}$$

3.
$$f(g(x)) =$$

4.
$$g(f(x)) =$$

Ex 106: For $f(x) = x^2 + 2x$ and g(x) = 2 - x, find in simplest form:

1.
$$f(g(3)) =$$

2.
$$f(g(-1)) = \boxed{}$$

$$3. \ f(g(x)) =$$

4.
$$g(f(x)) =$$

Ex 107: For f(x) = 3x - 5, find in simplest form:

1.
$$f(f(-1)) =$$

2.
$$f(f(x)) =$$

B.2.2 DECOMPOSING FUNCTIONS INTO COMPOSITIONS

Ex 108: Find two functions f and g such that $f(g(x)) = \sqrt{2x-1}$ and $g(x) \neq x$.

•
$$f(x) =$$

•
$$g(x) =$$

Ex 109: Find two functions f and g such that $f(g(x)) = (x+2)^5$ and $g(x) \neq x$.

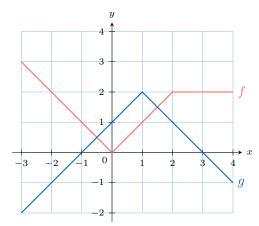
•
$$f(x) = \boxed{}$$

•
$$g(x) = \boxed{}$$

Ex 110: Find two functions f and g such that $f(g(x)) = \frac{1}{x^2 + 1}$ and $g(x) \neq x$.

•
$$f(x) =$$

•
$$g(x) = \boxed{}$$

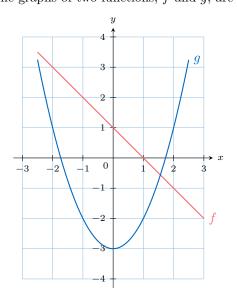

Ex 111: Find two functions f and g such that $f(g(x)) = (x^3 - 2)^{-4}$ and $g(x) \neq x$.

•
$$f(x) = \boxed{}$$

•
$$g(x) =$$

B.2.3 EVALUATING COMPOSITE FUNCTIONS FROM GRAPHS

Ex 112: The graphs of two functions, f and g, are shown below.

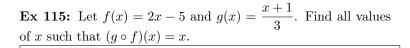

Use the graphs to find the values of:

1.
$$(f \circ g)(1) =$$

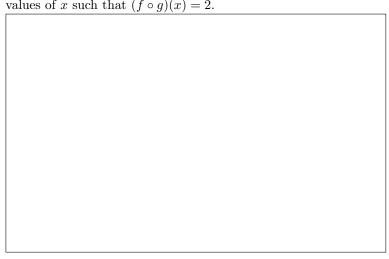
2.
$$(g \circ f)(-2) =$$

3.
$$(f \circ f)(0) =$$

Ex 113: The graphs of two functions, f and g, are shown.



Find the values of:


1.
$$(f \circ g)(2) =$$

B.2.4 SOLVING EQUATIONS WITH COMPOSITE FUNCTIONS

Ex 114: Let $f(x) = x^2 - 3$ and g(x) = 2x - 1. Find all values of x such that $(f \circ g)(x) = 6$.

Ex 116: Let $f(x) = x^2 - 4x + 5$ and g(x) = x - 1. Find all values of x such that $(f \circ g)(x) = 2$.

B.3 INVERSE FUNCTIONS

B.3.1 FINDING AND CHECKING INVERSES

Ex 117:

1. Find the inverse of f(x) = x + 3.

$$f^{-1}(x) = \boxed{}$$

2. Evaluate

$$f^{-1}(f(x)) =$$
 $f(f^{-1}(x)) =$

Ex 118:

1. Find the inverse of f(x) = 4x - 8.

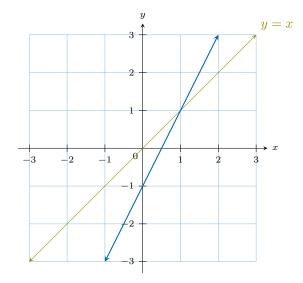
$$f^{-1}(x) = \boxed{}$$

2. Evaluate

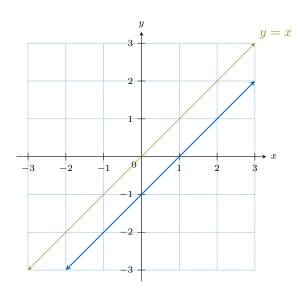
$$f^{-1}(f(x)) =$$
 $f(f^{-1}(x)) =$

Ex 119:

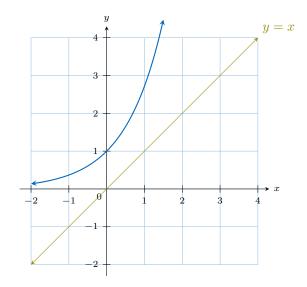
1. Find the inverse of $f(x) = \frac{x}{2} - 3$.


$$f^{-1}(x) = \boxed{}$$

2. Evaluate


$$f^{-1}(f(x)) =$$
 $f(f^{-1}(x)) =$

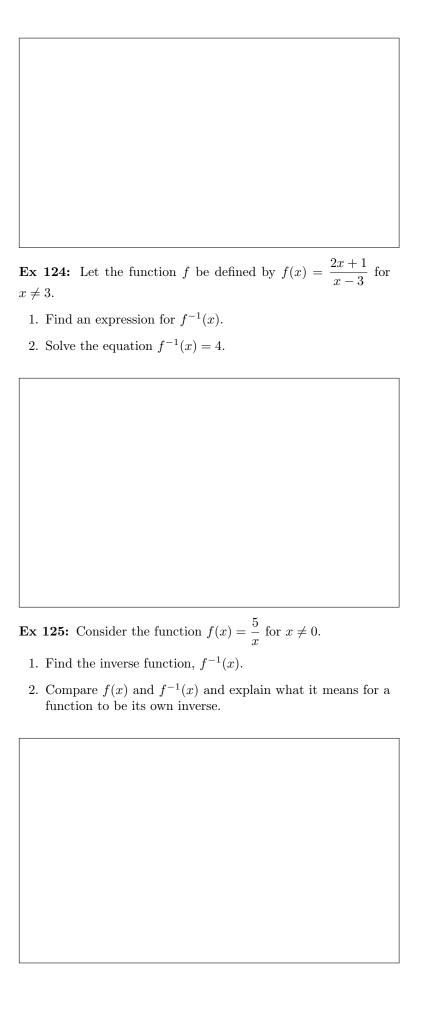
B.3.2 GRAPHING THE INVERSE FUNCTION BY REFLECTION


Ex 120: Draw the graph of the inverse function of the blue graph:

 \mathbf{Ex} 121: Draw the graph of the inverse function of the blue graph:

 \mathbf{Ex} 122: Draw the graph of the inverse function of the blue graph:

B.3.3 FINDING INVERSES OF VARIOUS FUNCTION TYPES


Ex 123: Let the function f be defined by

$$f: [1, \infty) \longrightarrow [2, \infty)$$
$$x \longmapsto (x-1)^2 + 2$$

1. State the domain and range of f.

2. Find an expression for $f^{-1}(x)$.

3. State the domain and range of f^{-1} .

