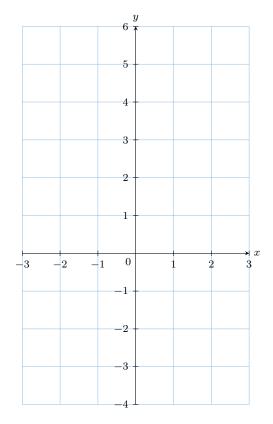
FUNCTION TRANSFORMATIONS

A TRANSLATION

A.1 TRANSLATING GRAPHS VERTICALLY

Ex 1: For the functions f(x) = x and g(x) = x + 3:

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x=-3,-2,-1,0,1,2,3.)
- 2. Find the geometrical transformation between these two graphs.

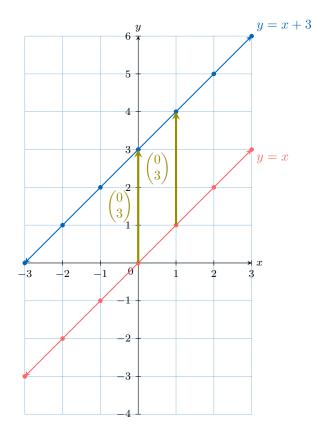


Answer:

1. Fill in the table of values:

x	-3	-2	-1	0	1	2	3
f(x)	-3	-2	-1	0	1	2	3
q(x)	0	1	2	3	4	5	6

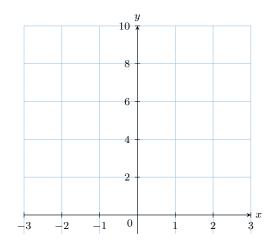
Plot the points and draw both lines:



2. The graph of g is obtained by translating the graph of f by the vector $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$. This is a **vertical translation** upward by 3 units, because g(x) = f(x) + 3.

Ex 2: For the functions $f(x) = x^2$ and $g(x) = x^2 + 2$:

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x=-3,-2,-1,0,1,2,3.)
- 2. Find the geometrical transformation between these two graphs.

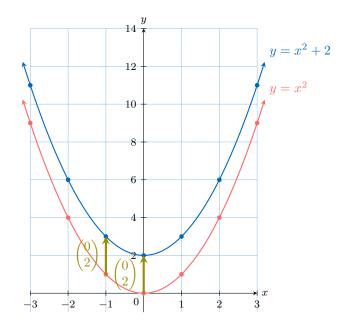


Answer:

1. Fill in the table of values:

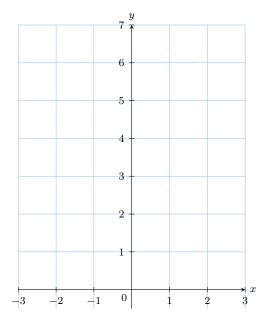
x	-3	-2	-1	0	1	2	3
f(x)	9	4	1	0	1	4	9
g(x)	11	6	3	2	3	6	11

Plot the points and draw the two parabolas:



2. The graph of g is obtained by translating the graph of f by . This is a ${\bf vertical\ translation}$ upward by 2 units, because g(x) = f(x) + 2.

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -3, -2, -1, 0, 1, 2, 3.)
- 2. Find the geometrical transformation between these two graphs.

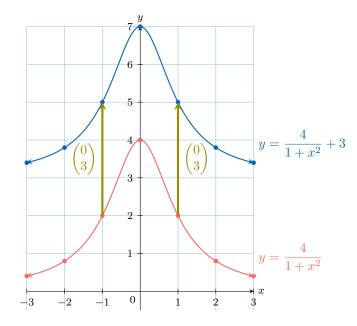


Answer:

1. Fill in the table of values:

x	-3	-2	-1	0	1	2	3
f(x)	0.4	0.8	2	4	2	0.8	0.4
g(x)	3.4	3.8	5	7	5	3.8	3.4

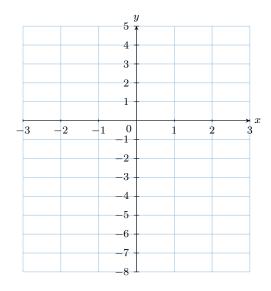
Plot the points and draw both curves:



2. The graph of g is obtained by translating the graph of f by the vector $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$. This is a **vertical translation** upward by 3 units, because g(x) = f(x) + 3.

For the functions $f(x) = \frac{4}{1+x^2}$ and $g(x) = \frac{4}{1+x^2} +$ **Ex 4:** For the functions f(x) = -(x-2)(x+2) and g(x) = -(x-2)(x+2) - 2:

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -3, -2, -1, 0, 1, 2, 3.)
- 2. Find the geometrical transformation between these two graphs.

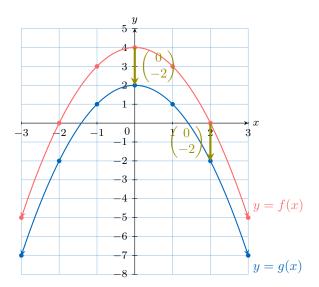


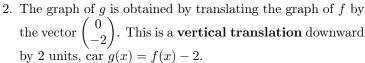
Answer:

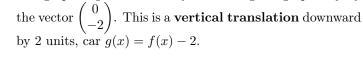
1. Fill in the table of values:

x	-3	-2	-1	0	1	2	3
f(x)	-5	0	3	4	3	0	-5
g(x)	-7	-2	1	2	1	-2	-7

Plot the points and draw both parabolas:



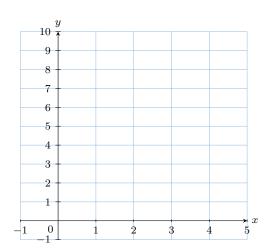




A.2 TRANSLATING GRAPHS HORIZONTALLY

For the functions $f(x) = x^2$ and $g(x) = (x-3)^2$:

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -1, 0, 1, 2, 3, 4, 5.)
- 2. Find the geometrical transformation between these two graphs.

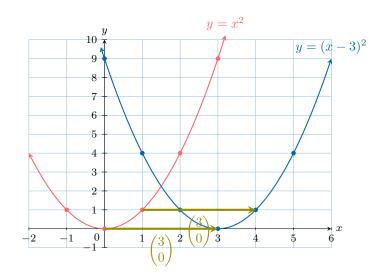


Answer:

1. Fill in the table of values:

x	-1	0	1	2	3	4	5
f(x)	1	0	1	4	9	16	25
g(x)	16	9	4	1	0	1	4

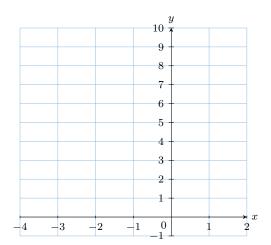
Plot the points and draw both curves:



2. The graph of g is obtained by translating the graph of f by . This is a $\bf horizontal\ translation$ to the right by 3 units, because g(x) = f(x-3).

For the functions $f(x) = x^2$ and $g(x) = (x+2)^2$:

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -4, -3, -2, -1, 0, 1, 2.
- 2. Find the geometrical transformation between these two graphs.

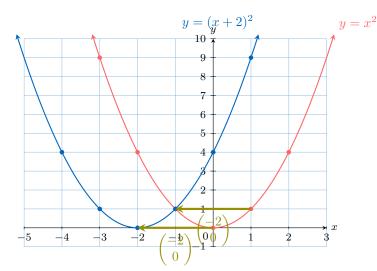


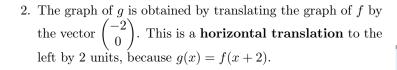
Answer:

1. Fill in the table of values:

x	-4	-3	-2	-1	0	1	2
f(x)	16	9	4	1	0	1	4
q(x)	4	1	0	1	4	9	16

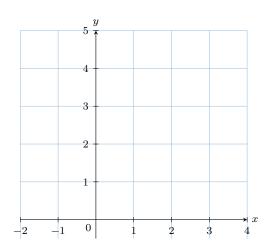
Plot the points and draw the two parabolas:





Ex 7: For the functions
$$f(x) = \frac{4}{1+x^2}$$
 and $g(x) = \frac{4}{1+(x-2)^2}$:

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x=-2,-1,0,1,2,3,4.)
- 2. Find the geometrical transformation between these two graphs.

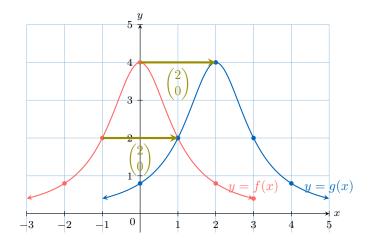


Answer:

1. Fill in the table of values:

x	-2	-1	0	1	2	3	4
f(x)	0.8	2	4	2	0.8	0.4	0.24
g(x)	0.24	0.4	0.8	2	4	2	0.8

Plot the points and draw both curves:



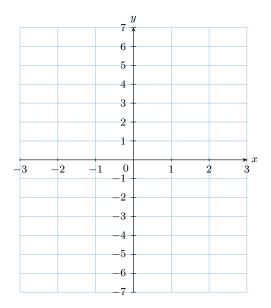
2. The graph of g is obtained by translating the graph of f by the vector $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$. This is a **horizontal translation** to the right by 2 units, because g(x) = f(x-2).

B DILATION

B.1 DILATING GRAPHS VERTICALLY

Ex 8: For the functions f(x) = x and g(x) = 2x:

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -3, -2, -1, 0, 1, 2, 3.)
- 2. Find the geometrical transformation between these two graphs.

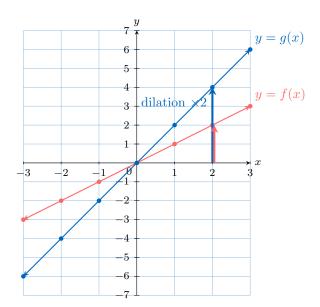


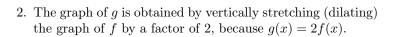
Answer:

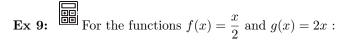
1. Fill in the table of values:

x	-3	-2	-1	0	1	2	3
f(x)	-3	-2	-1	0	1	2	3
a(x)	-6	-4	-2	0	2	4	6

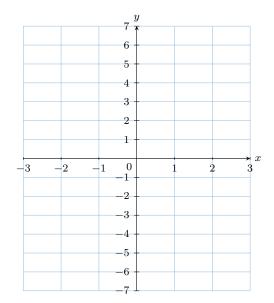
Plot the points and draw both lines:







- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x=-3,-2,-1,0,1,2,3.)
- 2. Find the geometrical transformation between these two graphs.

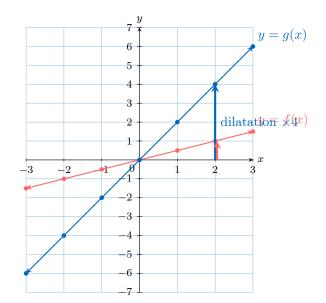


Answer:

1. Fill in the table of values:

x	-3	-2	-1	0	1	2	3
f(x)	-1.5	-1	-0.5	0	0.5	1	1.5
g(x)	-6	-4	-2	0	2	4	6

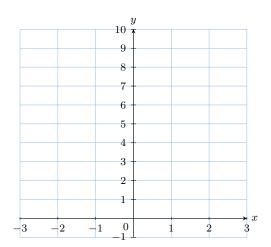
Plot the points and draw both lines:



2. The graph of g is obtained by vertically stretching (dilating) the graph of f by a factor of 4, because g(x) = 4f(x).

Ex 10: For the functions $f(x) = x^2$ and $g(x) = \frac{x^2}{2}$:

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -3, -2, -1, 0, 1, 2, 3.)
- 2. Find the geometrical transformation between these two graphs.

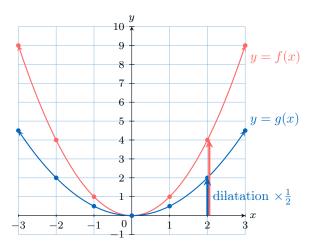


Answer:

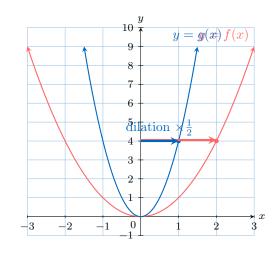
1. Fill in the table of values:

x	-3	-2	-1	0	1	2	3
f(x)	9	4	1	0	1	4	9
g(x)	4.5	2	0.5	0	0.5	2	4.5

Plot the points and draw both parabolas:



2. The graph of g is obtained by vertically compressing (dilating) the graph of f by a factor of $\frac{1}{2}$, because $g(x) = \frac{1}{2}f(x)$.



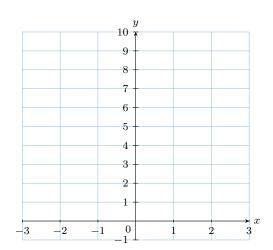
2. The graph of g is obtained by horizontally compressing the graph of f by a factor of $\frac{1}{2}$, because g(x)=f(2x). A point (x,y) on the graph of f is mapped to $(\frac{x}{2},y)$ on the graph of g. For example, the point (2,4) on f moves to (1,4) on g.

B.2 DILATING GRAPHS HORIZONTALLY

Ex 11: For the functions $f(x) = x^2$ and $g(x) = (2x)^2$:

1. On the same set of axes, sketch the graphs of f and g.

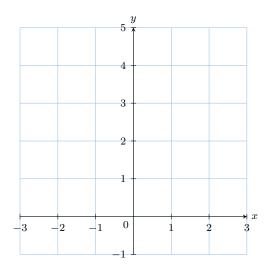
2. Find the geometrical transformation that maps the graph of f to the graph of g.



Ex 12: For the functions $f(x) = x^2$ and $g(x) = (\frac{1}{2}x)^2$:

1. On the same set of axes, sketch the graphs of f and g.

2. Find the geometrical transformation that maps the graph of f to the graph of g.



Answer:

1. Fill in a table of values:

x	-2	-1	0	1	2
$f(x) = x^2$	4	1	0	1	4
$g(x) = (2x)^2$	16	4	0	4	16

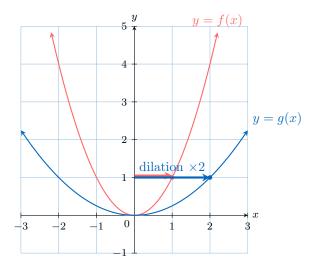
Plot the points and draw both curves:

Answer:

1. Fill in a table of values:

x	-2	-1	0	1	2
$f(x) = x^2$	4	1	0	1	4
$g(x) = (\frac{1}{2}x)^2$	1	0.25	0	0.25	1

Plot the points and draw both curves:



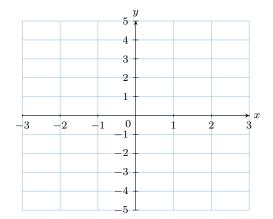
2. The graph of g is obtained by horizontally stretching the graph of f by a factor of 2, because $g(x) = f(\frac{1}{2}x)$. A point (x,y) on the graph of f is mapped to (2x,y) on the graph of g. For example, the point (1,1) on f moves to (2,1) on g.

C REFLECTION

C.1 REFLECTING GRAPHS

Ex 13: For the functions f(x) = x - 1 and g(x) = -(x - 1)

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -3, -2, -1, 0, 1, 2, 3.)
- $2.\ {\rm Find}\ {\rm the}\ {\rm geometrical}\ {\rm transformation}\ {\rm between}\ {\rm these}\ {\rm two}$ graphs.

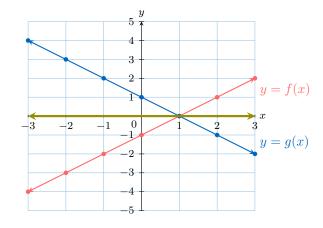


Answer:

1. Fill in the table of values:

x	-3	-2	-1	0	1	2	3
f(x)	-4	-3	-2	-1	0	1	2
g(x)	4	3	2	1	0	-1	-2

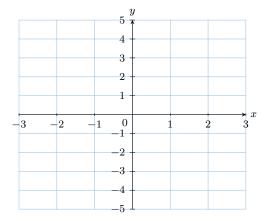
Plot the points and draw both lines:



2. The graph of g is obtained by reflecting the graph of f over the x-axis (symmetry about the x-axis) because g(x) = -f(x).

Ex 14: For the functions f(x) = x - 1 and g(x) = -x - 1:

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x=-3,-2,-1,0,1,2,3.)
- 2. Find the geometrical transformation between these two graphs.

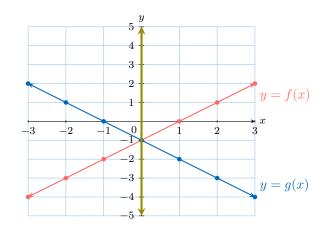


Answer:

1. Fill in the table of values:

x	-3	-2	-1	0	1	2	3
f(x)	-4	-3	-2	-1	0	1	2
g(x)	2	1	0	-1	-2	-3	-4

Plot the points and draw both lines:

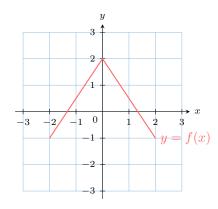


2. The graph of g is obtained by reflecting the graph of f over the y-axis (symmetry about the y-axis), because g(x) = f(-x).

D COMBINING TRANSFORMATIONS

D.1 APPLYING COMBINED TRANSFORMATIONS

Ex 15: The graph of y = f(x) is shown. On the same axes, sketch the graph of y = f(x+1) - 2.



Answer: The transformation y = f(x+1) - 2 involves two steps:

1. A horizontal translation of 1 unit to the left (x + 1).

2. A vertical translation of 2 units down (-2).

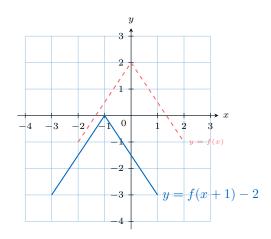
We apply these transformations to the key points of the original graph:

•
$$(-2,-1) \xrightarrow{\text{left 1, down 2}} (-3,-3)$$

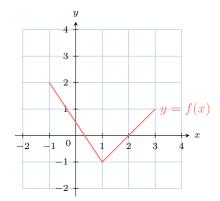
•
$$(0,2) \xrightarrow{\text{left } 1, \text{ down } 2} (-1,0)$$

•
$$(2,-1) \xrightarrow{\text{left } 1, \text{ down } 2} (1,-3)$$

Plotting the new points gives the transformed graph.



Ex 16: The graph of y = f(x) is shown. On the same axes, sketch the graph of y = 2f(x - 1).



Answer: The transformation y = 2f(x - 1) involves two steps, applied in order:

1. A horizontal translation of 1 unit to the right (x-1).

2. A vertical stretch by a factor of 2 (2f(...)).

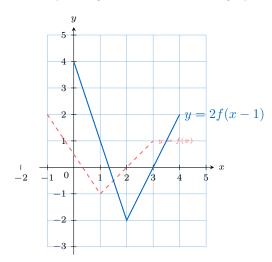
We apply these transformations to the key points:

•
$$(-1,2) \xrightarrow{\text{right 1}} (0,2) \xrightarrow{\text{stretch vert by 2}} (0,4)$$

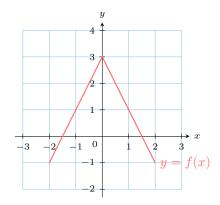
•
$$(1,-1) \xrightarrow{\text{right } 1} (2,-1) \xrightarrow{\text{stretch vert by } 2} (2,-2)$$

•
$$(3,1) \xrightarrow{\text{right 1}} (4,1) \xrightarrow{\text{stretch vert by 2}} (4,2)$$

Plotting the new points gives the transformed graph.



Ex 17: The graph of y = f(x) is shown. On the same axes, sketch the graph of y = -f(x) + 1.



Answer: The transformation y = -f(x) + 1 involves two vertical transformations:

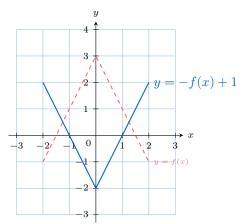
1. A reflection in the x-axis (-f(x)).

2. A vertical translation of 1 unit up (+1).

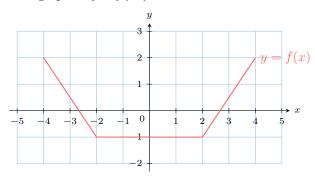
We apply these transformations to the key points of the original graph:

- $(-2,-1) \xrightarrow{\text{reflect in x-axis}} (-2,1) \xrightarrow{\text{up 1}} (-2,2)$
- $(0,3) \xrightarrow{\text{reflect in x-axis}} (0,-3) \xrightarrow{\text{up 1}} (0,-2)$
- $(2,-1) \xrightarrow{\text{reflect in x-axis}} (2,1) \xrightarrow{\text{up 1}} (2,2)$

Plotting the new points gives the transformed graph.



Ex 18: The graph of y = f(x) is shown. On the same axes, sketch the graph of y = f(2x) - 1.



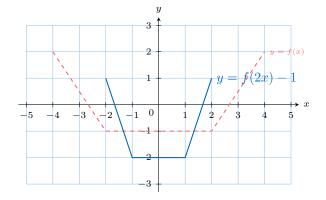
Answer: The transformation y = f(2x) - 1 involves two steps:

- 1. A horizontal dilation by a factor of $\frac{1}{2}$ (f(2x)).
- 2. A vertical translation of 1 unit down (-1).

We apply these transformations to the key points:

- $(-4,2) \xrightarrow{\text{horiz dilation by } 1/2} (-2,2) \xrightarrow{\text{down } 1} (-2,1)$
- (-2,-1) $\xrightarrow{\text{horiz dilation by } 1/2}$ (-1,-1) $\xrightarrow{\text{down } 1}$ (-1,-2)
- $(2,-1) \xrightarrow{\text{horiz dilation by } 1/2} (1,-1) \xrightarrow{\text{down } 1} (1,-2)$
- $(4,2) \xrightarrow{\text{horiz dilation by } 1/2} (2,2) \xrightarrow{\text{down } 1} (2,1)$

Plotting the new points gives the transformed graph.



D.2 FINDING EQUATIONS FROM A SEQUENCE OF **TRANSFORMATIONS**

Ex 19: Consider a function y = f(x). Find the equation of the resulting function, g(x), if the graph of f is transformed by the following sequence:

- 1. A reflection in the y-axis.
- 2. A horizontal stretch by a factor of 2.

Answer: We apply the transformations step-by-step to the initial function y = f(x).

1. Reflection in the y-axis:

This transformation replaces x with -x. The function becomes: y = f(-x).

2. Horizontal stretch by a factor of 2: This transformation replaces x with $\frac{x}{2}$ in the current function. We apply this to the result from step 1. The function becomes: $y = f\left(-\frac{x}{2}\right)$.

The final function is $g(x) = f\left(-\frac{x}{2}\right)$.

Ex 20: Consider a function y = f(x). Find the equation of the resulting function, g(x), if the graph of f is transformed by the following sequence:

- 1. A vertical stretch by a factor of 3.
- 2. A reflection in the x-axis.

Answer: We apply the transformations step-by-step to the initial function y = f(x).

1. Vertical stretch by a factor of 3:

This transformation multiplies the entire function by 3. The function becomes: y = 3f(x).

2. Reflection in the x-axis:

This transformation multiplies the current function by -1. We apply this to the result from step 1. The function becomes: y = -(3f(x)).

The final function is g(x) = -3f(x).

Ex 21: Consider a function y = f(x). Find the equation of the resulting function, q(x), if the graph of f is transformed by the following sequence:

- 1. A horizontal translation of 5 units to the left.
- 2. A horizontal compression by a factor of $\frac{1}{2}$.

Answer: We apply the transformations step-by-step to the initial function y = f(x).

1. Horizontal translation of 5 units to the left:

This transformation replaces x with (x + 5). The function becomes: y = f(x+5).

2. Horizontal compression by a factor of $\frac{1}{2}$:

This transformation replaces x with 2x in the current function. We apply this to the result from step 1. The function becomes: y = f((2x) + 5).

The final function is g(x) = f(2x + 5).