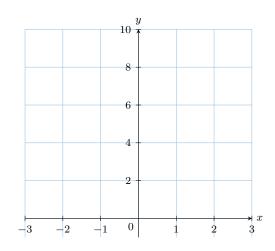
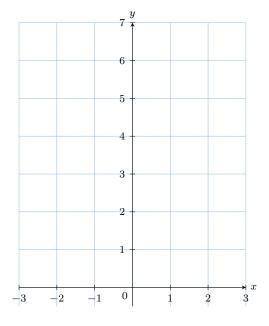

FUNCTION TRANSFORMATIONS


A TRANSLATION

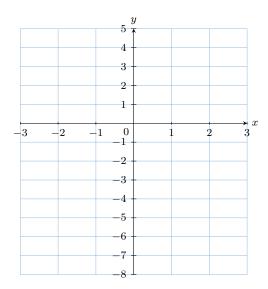
A.1 TRANSLATING GRAPHS VERTICALLY

For the functions f(x) = x and g(x) = x + 3:

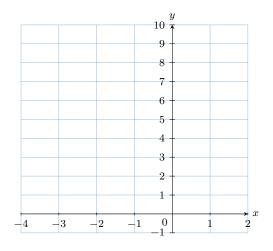

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -3, -2, -1, 0, 1, 2, 3.)
- 2. Find the geometrical transformation between these two graphs.

For the functions $f(x) = \frac{4}{1+x^2}$ and $g(x) = \frac{4}{1+x^2}$

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -3, -2, -1, 0, 1, 2, 3.)
- 2. Find the geometrical transformation between these two graphs.

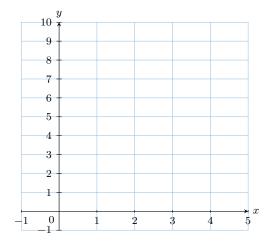


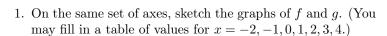
For the functions $f(x) = x^2$ and $g(x) = x^2 + 2$:


- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -3, -2, -1, 0, 1, 2, 3.
- graphs.

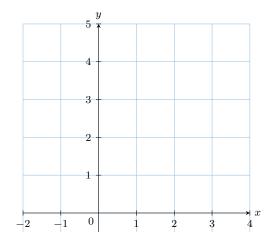
2. Find the geometrical transformation between these two **Ex 4:** For the functions f(x) = -(x-2)(x+2) and g(x) = -(x-2)(x+2)-(x-2)(x+2)-2:

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -3, -2, -1, 0, 1, 2, 3.)
- 2. Find the geometrical transformation between these two graphs.

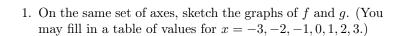

- Ex 6: For the functions $f(x) = x^2$ and $g(x) = (x+2)^2$:
- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -4, -3, -2, -1, 0, 1, 2.)
- $2.\ {\rm Find}\ {\rm the}\ {\rm geometrical}\ {\rm transformation}\ {\rm between}\ {\rm these}\ {\rm two}$ graphs.

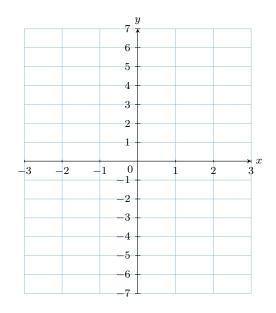

A.2 TRANSLATING GRAPHS HORIZONTALLY

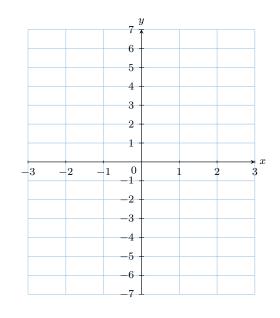
Ex 5: For the functions $f(x) = x^2$ and $g(x) = (x-3)^2$:


- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x=-1,0,1,2,3,4,5.)
- 2. Find the geometrical transformation between these two graphs.

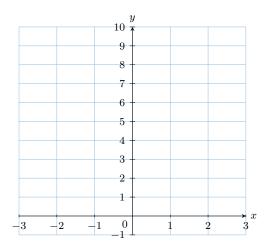
Ex 7: For the functions $f(x) = \frac{4}{1+x^2}$ and $g(x) = \frac{4}{1+(x-2)^2}$:


2. Find the geometrical transformation between these two graphs.


B DILATION


B.1 DILATING GRAPHS VERTICALLY

Ex 8: For the functions f(x) = x and g(x) = 2x:


2. Find the geometrical transformation between these two graphs. $\,$

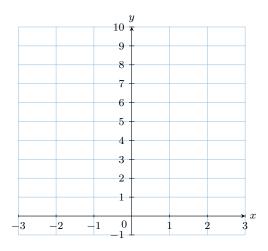
Ex 10: For the functions $f(x) = x^2$ and $g(x) = \frac{x^2}{2}$:

- 1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x = -3, -2, -1, 0, 1, 2, 3.)
- 2. Find the geometrical transformation between these two graphs.

Ex 9: For the functions $f(x) = \frac{x}{2}$ and g(x) = 2x:

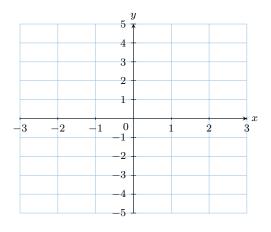
1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x=-3,-2,-1,0,1,2,3.)

2. Find the geometrical transformation between these two graphs. $\,$



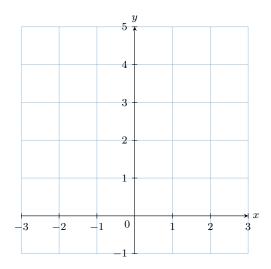
B.2 DILATING GRAPHS HORIZONTALLY

Ex 11: For the functions $f(x) = x^2$ and $g(x) = (2x)^2$:


1. On the same set of axes, sketch the graphs of f and g.

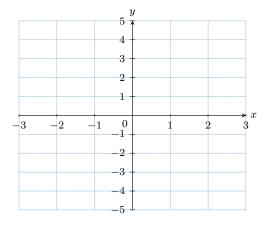
2. Find the geometrical transformation that maps the graph of f to the graph of g.

1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x=-3,-2,-1,0,1,2,3.)


2. Find the geometrical transformation between these two graphs.

Ex 12: For the functions $f(x) = x^2$ and $g(x) = (\frac{1}{2}x)^2$:

1. On the same set of axes, sketch the graphs of f and g.

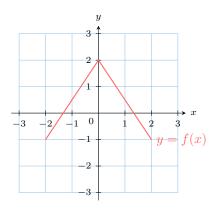

2. Find the geometrical transformation that maps the graph of f to the graph of g.

Ex 14: For the functions f(x) = x - 1 and g(x) = -x - 1:

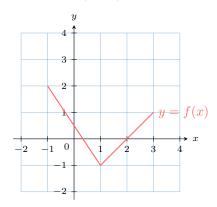
1. On the same set of axes, sketch the graphs of f and g. (You may fill in a table of values for x=-3,-2,-1,0,1,2,3.)

2. Find the geometrical transformation between these two graphs.

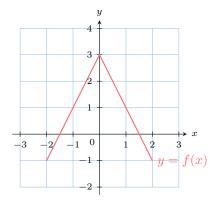
C REFLECTION

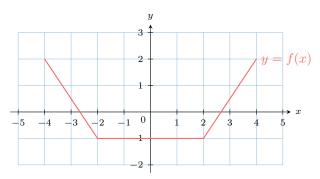

C.1 REFLECTING GRAPHS

Ex 13: For the functions f(x) = x - 1 and g(x) = -(x - 1) .

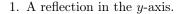

D COMBINING TRANSFORMATIONS

D.1 APPLYING COMBINED TRANSFORMATIONS


Ex 15: The graph of y = f(x) is shown. On the same axes, sketch the graph of y = f(x+1) - 2.


Ex 16: The graph of y = f(x) is shown. On the same axes, sketch the graph of y = 2f(x - 1).

Ex 17: The graph of y = f(x) is shown. On the same axes, sketch the graph of y = -f(x) + 1.



Ex 18: The graph of y = f(x) is shown. On the same axes, sketch the graph of y = f(2x) - 1.

D.2 FINDING EQUATIONS FROM A SEQUENCE OF TRANSFORMATIONS

Ex 19: Consider a function y = f(x). Find the equation of the resulting function, g(x), if the graph of f is transformed by the following sequence:

2	Δ	horizontal	stretch	by s	a factor	of 2
∠.	$\boldsymbol{\Lambda}$	HOHZOHTAL	SHELLII	DV 6	a ractor	01 4.

Ex 20: Consider a function y = f(x). Find the equation of the resulting function, g(x), if the graph of f is transformed by the following sequence:

- 1. A vertical stretch by a factor of 3.
- 2. A reflection in the x-axis.

Ex 21: Consider a function y = f(x). Find the equation of the resulting function, g(x), if the graph of f is transformed by the following sequence:

- 1. A horizontal translation of 5 units to the left.
- 2. A horizontal compression by a factor of $\frac{1}{2}$.