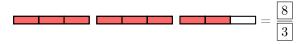
A DEFINING AND REPRESENTING FRACTIONS

A.1 FINDING FRACTIONS

 $\mathbf{Ex}\ \mathbf{1:}\ \mathbf{A}$ bar represents 1. Find the fraction that represents the shaded part:

Answer:

- A bar (1) is divided into 4 equal parts:
- 5 parts are shaded.
- So, $\frac{5}{4} =$


Ex 2: A bar represents 1. Find the fraction that represents the shaded part:

Answer:

- A bar (1) is divided into 3 equal parts:
- 5 parts are shaded.
- So, $\frac{5}{3} =$

Ex 3: A bar represents 1. Find the fraction that represents the shaded part:

Answer:

- A bar (1) is divided into 3 equal parts:
- 8 parts are shaded.
- So, $\frac{8}{3} =$

Ex 4: A circle represents 1. Find the fraction that represents the shaded part:

Answer:

- A circle (1) is divided into 4 equal parts.
- 7 parts are shaded.

A.2 WRITING FRACTIONS FROM WORDS

Ex 5: Write as fraction:

one over four=
$$\frac{1}{4}$$

Answer:

• one over four $=\frac{1}{4}$

Ex 6: Write as fraction:

three over five
$$=\frac{\boxed{3}}{\boxed{5}}$$

Answer:

• three over five $=\frac{3}{5}=$

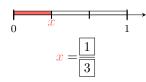
Ex 7: Write as fraction:

three quarters
$$=$$
 $\frac{\boxed{3}}{\boxed{4}}$

Answer

• three quarters $=\frac{3}{4}=$

Ex 8: Write as fraction:

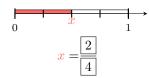

six over hundred =
$$\frac{\boxed{6}}{\boxed{100}}$$

Answer

• six over hundred (six hundredths) = $\frac{6}{100}$

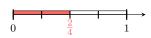
A.3 FINDING FRACTIONS WITH THE BAR MODEL

Ex 9: Find the value of x

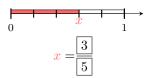


Answer:

- 1 is divided into 3 equals parts.
- x is at 1 part from 0.
- So, $x = \frac{1}{3}$.



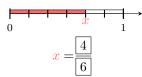
Ex 10: Find the value of x



- 1 is divided into 4 equals parts.
- x is at 2 parts from 0.

• So,
$$x = \frac{2}{4}$$
.

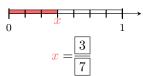
Ex 11: Find the value of x


Answer:

- 1 is divided into 5 equals parts.
- x is at 3 parts from 0.

• So,
$$x = \frac{3}{5}$$
.

Ex 12: Find the value of x

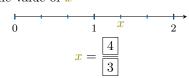

Answer:

- 1 is divided into 6 equals parts.
- x is at 4 parts from 0.

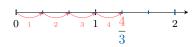
• So,
$$x = \frac{4}{6}$$
.


Ex 13: Find the value of x

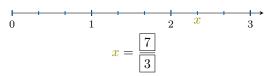
Answer:


- 1 is divided into 7 equals parts.
- x is at 3 parts from 0.

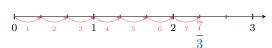
• So,
$$x = \frac{3}{7}$$
.


A.4 FINDING FRACTIONS GREATER THAN 1

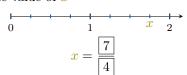
Ex 14: Find the value of x


Answer:

- 1 is divided into 3 equals parts.
- x is located at 4 parts from 0.


• So,
$$x = \frac{4}{3}$$
.

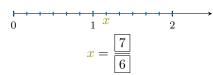
Ex 15: Find the value of x


Answer:

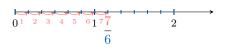
- 1 is divided into 3 equal parts.
- x is located at 7 parts from 0.

• So,
$$x = \frac{7}{3}$$
.

Ex 16: Find the value of x

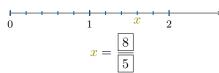

Answer:

- 1 is divided into 4 equal parts.
- x is located at 7 parts from 0.

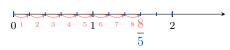


• So,
$$x = \frac{7}{4}$$
.

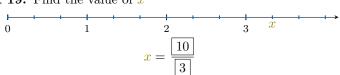
Ex 17: Find the value of x



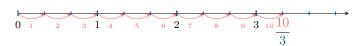
- 1 is divided into 6 equal parts.
- x is located at 7 parts from 0.



Ex 18: Find the value of x


Answer:

- 1 is divided into 5 equal parts.
- x is located at 8 parts from 0.


• So,
$$x = \frac{8}{5}$$
.

Ex 19: Find the value of x

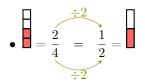
Answer:

- 1 is divided into 3 equal parts.
- x is located at 10 parts from 0.

• So,
$$x = \frac{10}{3}$$
.

B EQUIVALENT FRACTIONS

B.1 FINDING THE MISSING NUMERATOR

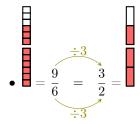

Ex 20:

$$\frac{2}{4} = \frac{1}{2}$$

Answer.

$$\bullet \frac{2}{4} = \frac{1 \times \cancel{2}}{2 \times \cancel{2}}$$

$$= \frac{1}{2}$$


- The second denominator 2 is the first denominator 4 divided by 2: $4 \div 2 = 2$.
- To keep the fractions equivalent, the numerator must also be divided by 2.
- This means: $2 \div 2 = 1$, so the missing numerator is 1.

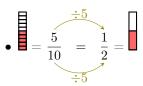
Ex 21:

$$\frac{9}{6} = \boxed{\frac{3}{2}}$$

Answer:

$$\begin{array}{ccc}
\bullet & \frac{9}{6} = \frac{3 \times \cancel{3}}{2 \times \cancel{3}} \\
& = \frac{3}{2}
\end{array}$$

- The second denominator 2 is the first denominator 6 divided by $3: 6 \div 3 = 2$.
- To keep the fractions equivalent, the numerator must also be divided by 3.
- This means: $9 \div 3 = 3$, so the missing numerator is 3.

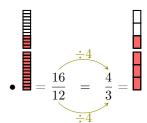

Ex 22:

$$\frac{5}{10} = \frac{1}{2}$$

Answer:

$$\bullet \frac{5}{10} = \frac{1 \times \cancel{5}}{2 \times \cancel{5}}$$

$$= \frac{1}{2}$$


- The second denominator 2 is the first denominator 10 divided by $5:10 \div 5 = 2$.
- To keep the fractions equivalent, the numerator must also be divided by 5.
- This means: $5 \div 5 = 1$, so the missing numerator is 1.

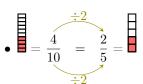
Ex 23:

$$\frac{16}{12} = \boxed{\frac{4}{3}}$$

$$\bullet \frac{16}{12} = \frac{4 \times \cancel{4}}{3 \times \cancel{4}}$$

$$= \frac{4}{3}$$

- The second denominator 3 is the first denominator 12 divided by $4:12 \div 4=3$.
- To keep the fractions equivalent, the numerator must also be divided by 4.
- This means: $16 \div 4 = 4$, so the missing numerator is 4.


Ex 24:

$$\frac{4}{10} = \boxed{\frac{2}{5}}$$

Answer:

$$\bullet \frac{4}{10} = \frac{2 \times \cancel{2}}{5 \times \cancel{2}}$$

$$= \frac{2}{5}$$

- The second denominator 5 is the first denominator 10 divided by 2: $10 \div 2 = 5$.
- To keep the fractions equivalent, the numerator must also be divided by 2.
- This means: $4 \div 2 = 2$, so the missing numerator is 2.

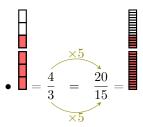
B.2 FINDING THE MISSING NUMERATOR

Ex 25:

$$\frac{1}{2} = \boxed{\frac{2}{4}}$$

Answer:

$$\bullet \quad \boxed{ } = \underbrace{\frac{1}{2}}_{\times 2} = \underbrace{\frac{2}{4}}_{=} = \boxed{ }$$

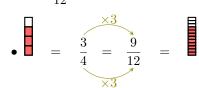

Ex 26:

$$\frac{4}{3} = \boxed{\frac{20}{15}}$$

Answer:

$$\bullet \frac{4}{3} = \frac{4 \times 5}{3 \times 5}$$

$$= \frac{20}{15}$$


Ex 27:

$$\frac{3}{4} = \frac{9}{12}$$

Answer:

$$\bullet \frac{3}{4} = \frac{3 \times 3}{4 \times 3}$$

$$= \frac{9}{12}$$

Ex 28:

$$\frac{5}{6} = \frac{10}{12}$$

Answer:

$$\bullet \frac{5}{6} = \frac{5 \times 2}{6 \times 2}$$

$$= \frac{10}{12}$$

$$= \frac{5}{6} = \frac{10}{12} =$$

Ex 29:

$$\frac{7}{8} = \frac{28}{32}$$

B.3 FINDING THE MISSING DENOMINATOR

Ex 30:

$$\frac{4}{10} = \frac{2}{5}$$

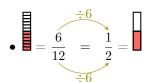
Answer:

$$\bullet \frac{4}{10} = \frac{2 \times \cancel{2}}{5 \times \cancel{2}}$$

$$= \frac{2}{5}$$

$$\bullet = \frac{4}{10} = \frac{2}{5} = \boxed{}$$

- The second numerator 2 is the first numerator 4 divided by 2: $4 \div 2 = 2$.
- To keep the fractions equivalent, the denominator must also be divided by 2.
- This means: $10 \div 2 = 5$, so the missing denominator is 5.


Ex 31:

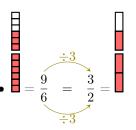
$$\frac{6}{12} = \frac{1}{\boxed{2}}$$

Answer:

$$\bullet \frac{6}{12} = \frac{1 \times \cancel{6}}{2 \times \cancel{6}}$$

$$= \frac{1}{2}$$

- The second numerator 1 is the first numerator 6 divided by $6: 6 \div 6 = 1$.
- To keep the fractions equivalent, the denominator must also be divided by 6.
- This means: $12 \div 6 = 2$, so the missing denominator is 2.

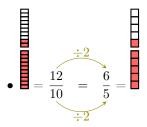

Ex 32:

$$\frac{9}{6} = \frac{3}{2}$$

Answer:

$$\bullet \frac{9}{6} = \frac{3 \times \cancel{3}}{2 \times \cancel{3}}$$

$$= \frac{3}{2}$$


- The second numerator 3 is the first numerator 9 divided by $3:9 \div 3 = 3$.
- To keep the fractions equivalent, the denominator must also be divided by 3.
- This means: $6 \div 3 = 2$, so the missing denominator is 2.

Ex 33:

$$\frac{12}{10} = \frac{6}{5}$$

Answer:

$$\bullet \frac{12}{10} = \frac{6 \times \cancel{2}}{5 \times \cancel{2}}$$
$$= \frac{6}{5}$$

- The second numerator 6 is the first numerator 12 divided by 2: $12 \div 2 = 6$.
- To keep the fractions equivalent, the denominator must also be divided by 2.
- This means: $10 \div 2 = 5$, so the missing denominator is 5.

B.4 FINDING THE MISSING DENOMINATOR

Ex 34:

$$\frac{2}{5} = \frac{6}{15}$$

Answer:

$$\bullet \frac{2}{5} = \frac{2 \times 3}{5 \times 3}$$

$$= \frac{6}{15}$$

$$= \frac{2}{5} = \frac{6}{15} = \boxed{}$$

Ex 35:

$$\frac{2}{3} = \frac{8}{12}$$

$$\bullet \frac{2}{3} = \frac{2 \times 4}{3 \times 4}$$

$$= \frac{8}{12}$$

$$\bullet \qquad = \qquad \frac{2}{3} = \frac{8}{12} \qquad = \qquad \boxed{\blacksquare}$$

Ex 36:

$$\frac{3}{5} = \frac{9}{15}$$

Answer:

$$\bullet \frac{3}{5} = \frac{3 \times 3}{5 \times 3}$$

$$= \frac{9}{15}$$

$$\bullet \qquad = \qquad \frac{3}{5} = \frac{9}{15} \qquad = \qquad \boxed{\blacksquare}$$

Ex 37:

$$\frac{4}{7} = \frac{12}{21}$$

Answer:

$$\bullet \frac{4}{7} = \frac{4 \times 3}{7 \times 3}$$

$$= \frac{12}{21}$$

$$\bullet \qquad = \qquad \frac{4}{7} = \frac{12}{21} \qquad = \qquad \blacksquare$$

Ex 38:

$$\frac{5}{9} = \frac{20}{36}$$

Answer:

$$= \frac{5}{9} = \frac{20}{36} = \boxed{}$$

C SIMPLIFICATION

C.1 SIMPLIFYING FRACTIONS

Ex 39: Simplify:

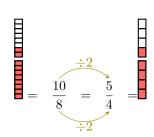
$$\frac{4}{6} = \boxed{\frac{2}{3}}$$

Answer:

$$= \frac{4}{6} = \frac{2}{3}$$

Ex 40: Simplify:

$$\frac{2}{4} = \boxed{\frac{1}{2}}$$


Answer:

$$= \frac{2}{4} = \frac{1}{2} =$$

Ex 41: Simplify:

$$\frac{10}{8} = \frac{\boxed{5}}{\boxed{4}}$$

Answer:

Ex 42: Simplify:

$$\frac{6}{9} = \boxed{\frac{2}{3}}$$

$$= \frac{6}{9} = \frac{2}{3}$$

C.2 SIMPLIFYING FRACTIONS

Ex 43: Simplify:

$$\frac{24}{16} = \boxed{\frac{3}{2}}$$

Answer:

•

$$\frac{24}{16} = \frac{3 \times \cancel{8}}{2 \times \cancel{8}}$$
$$= \frac{3}{2}$$

$$\bullet \frac{24}{16} = \frac{3}{2}$$

Ex 44: Simplify:

$$\frac{12}{20} = \boxed{\frac{3}{5}}$$

Answer:

•

$$\frac{12}{20} = \frac{3 \times \cancel{4}}{5 \times \cancel{4}}$$
$$= \frac{3}{5}$$

$$\bullet \ \frac{12}{20} = \frac{3}{5}$$

Ex 45: Simplify:

$$\frac{30}{100} = \boxed{\frac{3}{10}}$$

Answer:

•

$$\frac{30}{100} = \frac{3 \times \cancel{10}}{10 \times \cancel{10}}$$
$$= \frac{3}{10}$$

•
$$\frac{30}{100} = \frac{3}{10}$$

Ex 46: Simplify:

$$\frac{25}{100} = \boxed{\frac{1}{4}}$$

Answer:

$$\frac{25}{100} = \frac{1 \times \cancel{25}}{4 \times \cancel{25}}$$
$$= \frac{1}{4}$$

$$\bullet \frac{25}{100} = \frac{1}{4}$$

D CROSS MULTIPLICATION

D.1 SOLVING PROPORTIONS USING CROSS-MULTIPLICATION

Ex 47: Solve
$$x$$
 for $\frac{12}{4} = \frac{x}{6}$: $x = 18$

Answer:

$$\frac{12}{4} \times \frac{x}{6}$$

$$4 \times x = 12 \times 6 \qquad \text{(cross multiplication)}$$

$$x = 12 \times 6 \div 4 \quad \text{(dividing both sides by 4)}$$

$$x = 18$$

Ex 48: Solve
$$x$$
 for $\frac{11}{10} = \frac{x}{5}$: $x = 5.5$

Answer:

$$\frac{11}{10} \xrightarrow{x} \frac{x}{5}$$

$$10 \times x = 11 \times 5 \qquad \text{(cross multiplication)}$$

$$x = 11 \times 5 \div 10 \quad \text{(dividing both sides by 10)}$$

$$x = 5.5$$

Ex 49: Solve
$$x$$
 for $\frac{12}{10} = \frac{18}{x}$: $x = \boxed{15}$

$$\frac{12}{10} = \frac{18}{x}$$

$$12 \times x = 18 \times 10 \qquad \text{(cross multiplication)}$$

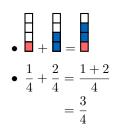
$$x = 18 \times 10 \div 12 \quad \text{(dividing both sides by 12)}$$

$$x = 15$$

Ex 50: Solve
$$x$$
 for $\frac{27}{x} = \frac{30}{10}$: $x = 9$

$$\begin{array}{cccc}
27 & 30 \\
\hline
x & 10
\end{array}$$

$$30 \times x = 27 \times 10 & \text{(cross multiplication)} \\
x & = 27 \times 10 \div 30 & \text{(dividing both sides by 30)}$$


E ADDITION AND SUBTRACTION

E.1 ADDING FRACTIONS WITH COMMON DENOMINATORS

Ex 51:

$$\frac{1}{4} + \frac{2}{4} = \boxed{\frac{3}{4}}$$

Answer

Ex 52:

$$\frac{3}{5} + \frac{1}{5} = \frac{4}{5}$$

Answer

$$\bullet \quad \frac{3}{5} + \frac{1}{5} = \frac{3+1}{5}$$

$$= \frac{4}{5}$$

Ex 53:

$$\frac{2}{6} + \frac{3}{6} = \frac{5}{6}$$

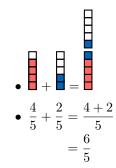
Answer:

$$\bullet \frac{2}{6} + \frac{3}{6} = \frac{2+3}{6}$$

$$\bullet \frac{2}{6} + \frac{3}{6} = \frac{5}{6}$$

Ex 54:

$$\frac{2}{3} + \frac{2}{3} = \frac{\boxed{4}}{\boxed{3}}$$


Answer:

•
$$\frac{2}{3} + \frac{2}{3} = \frac{2+2}{3}$$

Ex 55:

$$\frac{4}{5} + \frac{2}{5} = \frac{\boxed{6}}{\boxed{5}}$$

Answer:

E.2 SUBTRACTING FRACTIONS WITH COMMON DENOMINATORS

Ex 56:

$$\frac{3}{4} - \frac{2}{4} = \boxed{\frac{1}{4}}$$

Answer:

$$\bullet \quad \overline{3} - \overline{4} = \overline{3}$$

$$\bullet \quad \overline{3} - \overline{4} = \overline{3} - 2$$

$$= \overline{1}$$

Ex 57:

$$\frac{4}{5} - \frac{3}{5} = \frac{\boxed{1}}{\boxed{5}}$$

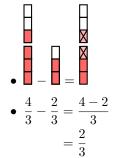
Answer:

$$\bullet \frac{4}{5} - \frac{3}{5} = \frac{4-3}{5}$$

$$= \frac{1}{5}$$

Ex 58:

$$\frac{3}{4} - \frac{1}{4} = \boxed{\frac{2}{4}}$$

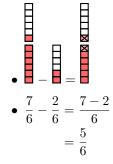


•
$$\frac{3}{4} - \frac{1}{4} = \frac{3-1}{4}$$

= $\frac{2}{4}$

Ex 59:

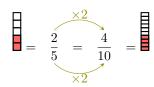
$$\frac{4}{3} - \frac{2}{3} = \frac{2}{3}$$


Answer:

Ex 60:

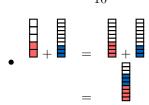
$$\frac{7}{6} - \frac{2}{6} = \frac{5}{6}$$

Answer:


E.3 ADDING FRACTIONS WITH LIKE DENOMINATORS

Ex 61:

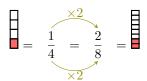
$$\frac{2}{5} + \frac{3}{10} = \frac{\boxed{7}}{\boxed{10}}$$


Answer:

• Since $\frac{2}{5}$ and $\frac{3}{10}$ have different denominators, rewrite $\frac{2}{5}$ with the denominator 10:

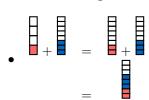
This ensures the fractions have the same denominator.

$$\frac{2}{5} + \frac{3}{10} = \frac{4}{10} + \frac{3}{10}$$
$$= \frac{7}{10}$$



Ex 62:

$$\frac{1}{4} + \frac{3}{8} = \frac{\boxed{5}}{\boxed{8}}$$

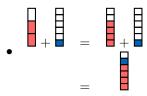

Answer:

• Since $\frac{1}{4}$ and $\frac{3}{8}$ have different denominators, rewrite $\frac{1}{4}$ with the denominator 8:

This ensures the fractions have the same denominator.

 $\frac{1}{4} + \frac{3}{8} = \frac{2}{8} + \frac{3}{8}$ $= \frac{5}{8}$

Ex 63:


$$\frac{2}{3} + \frac{1}{6} = \frac{5}{6}$$

Answer:

• Since $\frac{2}{3}$ and $\frac{1}{6}$ have different denominators, rewrite $\frac{2}{3}$ with the denominator 6:

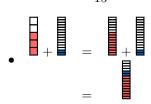
This ensures the fractions have the same denominator.

$$\frac{2}{3} + \frac{1}{6} = \frac{4}{6} + \frac{1}{6}$$
$$= \frac{5}{6}$$



Ex 64:

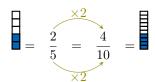
$$\frac{3}{5} + \frac{2}{15} = \boxed{11}$$


Answer

• Since $\frac{3}{5}$ and $\frac{2}{15}$ have different denominators, rewrite $\frac{3}{5}$ with the denominator 15:

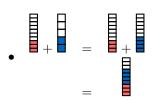
This ensures the fractions have the same denominator.

 $\frac{3}{5} + \frac{2}{15} = \frac{9}{15} + \frac{2}{15}$ $= \frac{11}{15}$



Ex 65:

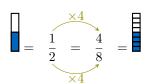
$$\frac{3}{10} + \frac{2}{5} = \frac{\boxed{7}}{\boxed{10}}$$


Answer:

• Since $\frac{3}{10}$ and $\frac{2}{5}$ have different denominators, rewrite $\frac{2}{5}$ with the denominator 10:

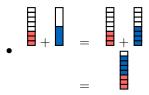
This ensures the fractions have the same denominator.

 $\frac{3}{10} + \frac{2}{5} = \frac{3}{10} + \frac{4}{10}$ $= \frac{7}{10}$



Ex 66:

$$\frac{3}{8} + \frac{1}{2} = \frac{\boxed{7}}{\boxed{8}}$$


Answer:

• Since $\frac{3}{8}$ and $\frac{1}{2}$ have different denominators, rewrite $\frac{1}{2}$ with the denominator 8:

This ensures the fractions have the same denominator.

 $\frac{3}{8} + \frac{1}{2} = \frac{3}{8} + \frac{4}{8}$ $= \frac{7}{8}$

E.4 SUBTRACTING FRACTIONS WITH LIKE

Ex 67:

$$\frac{2}{5} - \frac{3}{10} = \boxed{1}$$

Answer:

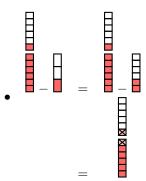
• Since $\frac{2}{5}$ and $\frac{3}{10}$ have different denominators, rewrite $\frac{2}{5}$ with the denominator 10:

$$\frac{2}{5} = \frac{4}{10} =$$

This ensures the fractions have the same denominator.

 $\frac{2}{5} - \frac{3}{10} = \frac{4}{10} - \frac{3}{10}$ $= \frac{4-3}{10}$

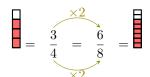
Ex 68:


$$\frac{7}{6} - \frac{1}{3} = \frac{\boxed{5}}{\boxed{6}}$$

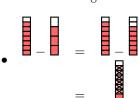
• Since $\frac{7}{6}$ and $\frac{1}{3}$ have different denominators, rewrite $\frac{1}{3}$ with Answer: the denominator 6:

$$= \frac{1}{3} = \frac{2}{6} = \boxed{}$$

This ensures the fractions have the same denominator.

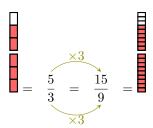

$$\frac{7}{6} - \frac{1}{3} = \frac{7}{6} - \frac{2}{6}$$
$$= \frac{7 - 2}{6}$$
$$= \frac{5}{6}$$

Ex 69:

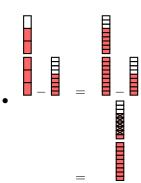

$$\frac{7}{8} - \frac{3}{4} = \frac{\boxed{1}}{\boxed{8}}$$

• Since $\frac{7}{8}$ and $\frac{3}{4}$ have different denominators, rewrite $\frac{3}{4}$ with

This ensures the fractions have the same denominator.

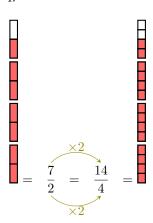

$$\frac{7}{8} - \frac{3}{4} = \frac{7}{8} - \frac{6}{8}$$
$$= \frac{7 - 6}{8}$$
$$= \frac{1}{8}$$

Ex 70:

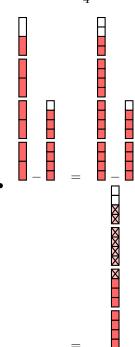

$$\frac{5}{3} - \frac{5}{9} = \boxed{\frac{10}{9}}$$

• Since $\frac{5}{3}$ and $\frac{5}{9}$ have different denominators, rewrite $\frac{5}{3}$ with the denominator 9:

This ensures the fractions have the same denominator.


$$\frac{5}{3} - \frac{5}{9} = \frac{15}{9} - \frac{5}{9}$$
$$= \frac{15 - 5}{9}$$
$$= \frac{10}{9}$$

Ex 71:


$$\frac{7}{2} - \frac{7}{4} = \frac{\boxed{7}}{\boxed{4}}$$

• Since $\frac{7}{2}$ and $\frac{7}{4}$ have different denominators, rewrite $\frac{7}{2}$ with

This ensures the fractions have the same denominator.

$$=\frac{7}{4}$$

Ex 72: Louis has a whole cake. He cuts it into 8 equal slices and eats 3 slices. What fraction of the whole cake remains?

$$\frac{\boxed{5}}{\boxed{8}}$$
 of the cake

Answer:

• Represent the cake as a fraction

The whole cake is divided into 8 slices, so the whole cake is 8

• Subtract the slices eaten by Louis

Louis eats 3 slices, which is $\frac{3}{8}$ of the cake. Remaining cake after Louis eats:

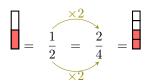
$$\frac{8}{8} - \frac{3}{8} = \frac{5}{8}.$$

• Final Answer:

The fraction of the cake that remains is $\frac{3}{8}$.

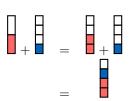
Ex 73: Today, Louis eats $\frac{1}{2}$ of a croissant. Then, Louis eats $\frac{1}{4}$ of another croissant. How much croissant did Louis eat in total?

Answer:


\bullet Represent the croissants as fractions

Louis eats $\frac{1}{2}$ of the first croissant and $\frac{1}{4}$ of the second croissant. To find the total, add the two fractions:

$$\frac{1}{2} + \frac{1}{4}.$$


• Find a common denominator

The denominators are 2 and 4. The least common denominator is 4. Convert $\frac{1}{2}$ to a fraction with denominator

Add the fractions

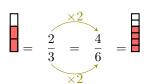
$$\frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4}$$
$$= \frac{3}{4}$$

• Final Answer:

Louis ate a total of $\frac{3}{4}$ of a croissant.

Ex 74: At the beginning, there are $\frac{5}{6}$ of a cake. After eating, there are $\frac{2}{3}$ of the cake. What quantity of cake did Louis eat?

$$\frac{\boxed{1}}{\boxed{6}}$$
 of the cake


Answer:

• Represent the cake as fractions
At the beginning, there is $\frac{5}{6}$ of the cake. After eating, $\frac{2}{3}$ of the cake remains. To find the quantity Louis ate, subtract the remaining cake from the initial amount:

$$\frac{5}{6} - \frac{2}{3}$$
.

Find a common denominator

The denominators are $\frac{2}{3}$ and $\frac{2}{3}$. The least common denominator is 6. Convert $\frac{2}{3}$ to a fraction with denominator

• Subtract the fractions

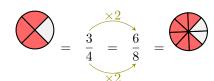
$$\frac{5}{6} - \frac{2}{3} = \frac{5}{6} - \frac{4}{6}$$
$$= \frac{1}{6}$$

• Final Answer: Louis ate $\frac{1}{6}$ of the cake.

Ex 75: At the beginning, there are $\frac{7}{8}$ of a pizza. After eating, there are $\frac{3}{4}$ of the pizza. What quantity of pizza did Louis eat?

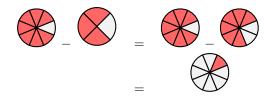
$$\begin{array}{|c|c|}
\hline 1 \\
\hline 8 \\
\hline
\end{array}$$
 of the pizza

Answer:


• Represent the pizza as fractions

At the beginning, there is $\frac{7}{8}$ of the pizza. After eating, $\frac{3}{4}$ of the pizza remains. To find the quantity Louis ate, subtract the remaining pizza from the initial amount:

$$\frac{7}{8} - \frac{3}{4}.$$


• Find a common denominator

The denominators are 8 and 4. The least common denominator is 8. Convert $\frac{3}{4}$ to a fraction with denominator

• Subtract the fractions

$$\frac{7}{8} - \frac{3}{4} = \frac{7}{8} - \frac{6}{8}$$
$$= \frac{1}{8}$$

• Final Answer: Louis ate $\frac{1}{8}$ of the pizza.

Ex 76: Louis read $\frac{2}{5}$ of his book on Saturday and $\frac{3}{10}$ of his book on Sunday. How much of his book did Louis read in total?

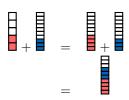
$$\frac{\boxed{7}}{\boxed{10}}$$
 of the book

Answer:

• Represent the book as fractions

Louis read $\frac{2}{5}$ of the book on Saturday and $\frac{3}{10}$ of the book on Sunday. To find the total, add the two fractions:

$$\frac{2}{5} + \frac{3}{10}$$
.


• Find a common denominator

The denominators are 5 and 10. The least common denominator is 10. Convert $\frac{2}{5}$ to a fraction with denominator 10:

$$= \frac{2}{5} = \frac{4}{10} =$$

• Add the fractions

$$\frac{2}{5} + \frac{3}{10} = \frac{4}{10} + \frac{3}{10}$$
$$= \frac{7}{10}$$

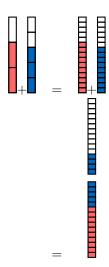
• Final Answer: Louis read a total of $\frac{7}{10}$ of his book.

FRACTIONS WITH UNLIKE **ADDING DENOMINATORS**

Ex 77: Calculate and simplify:

$$\frac{2}{3} + \frac{3}{5} = \boxed{19}$$

- Find a common denominator: To add fractions, they must have the same denominator.
 - Multiples of 3: 3, 6, 9, 12, **15**, ...
 - Multiples of 5: 5, 10, **15**, 20, ...
 - The smallest common denominator is **15**.


$$\frac{2}{3} + \frac{3}{5} = \frac{2 \times 5}{3 \times 5} + \frac{3 \times 3}{5 \times 3}$$

$$= \frac{10}{15} + \frac{9}{15} \quad \text{(common denominator} = 15)$$

$$= \frac{10 + 9}{15}$$

$$= \frac{19}{15}$$

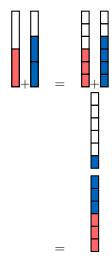
• Visual representation:

Ex 78: Calculate and simplify:

$$\frac{1}{2} + \frac{2}{3} = \frac{7}{6}$$

Answer:

- Find a common denominator: To add fractions, they must have the same denominator.
 - Multiples of 2: 2, 4, 6, 8, 10, ...
 - Multiples of 3: 3, 6, 9, 12, ...
 - The smallest common denominator is 6.


•
$$\frac{1}{2} + \frac{2}{3} = \frac{1 \times 3}{2 \times 3} + \frac{2 \times 2}{3 \times 2}$$

$$= \frac{3}{6} + \frac{4}{6} \qquad \text{(common denominator} = 6\text{)}$$

$$= \frac{3+4}{6} \qquad \text{(adding numerators)}$$

$$= \frac{7}{6}$$

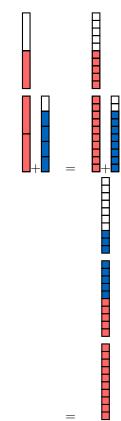
• Visual representation:

Ex 79: Calculate and simplify:

$$\frac{3}{2} + \frac{4}{5} = \boxed{\frac{23}{10}}$$

Answer:

- Find a common denominator: To add fractions, they must have the same denominator.
 - Multiples of 2: 2, 4, 6, 8, **10**, ...
 - Multiples of 5: 5, **10**, 15, ...
 - The smallest common denominator is 10.


$$\frac{3}{2} + \frac{4}{5} = \frac{3 \times \frac{5}{2 \times 5}}{2 \times 5} + \frac{4 \times 2}{5 \times 2}$$

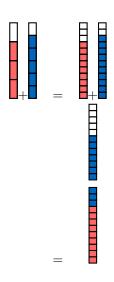
$$= \frac{15}{10} + \frac{8}{10} \quad \text{(common denominator} = 10)$$

$$= \frac{15 + 8}{10}$$

$$= \frac{23}{10}.$$

• Visual representation:

Ex 80: Calculate and simplify:


$$\frac{3}{4} + \frac{5}{6} = \boxed{\frac{19}{12}}$$

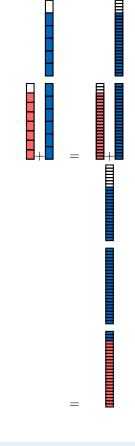
Answer:

- Find a common denominator: To add fractions, they must have the same denominator.
 - Multiples of 4: 4, 8, **12**, 16, 20, ...
 - Multiples of 6: 6, **12**, 18, 24, ...
 - The smallest common denominator is 12.

• $\frac{3}{4} + \frac{5}{6} = \frac{3 \times 3}{4 \times 3} + \frac{5 \times 2}{6 \times 2}$ $= \frac{9}{12} + \frac{10}{12} \qquad \text{(common denominator} = 12)$ $= \frac{9+10}{12} \qquad \text{(adding numerators)}$ $= \frac{19}{12}$

• Visual representation:

Ex 81: Calculate and simplify:


$$\frac{7}{8} + \frac{11}{6} = \frac{\boxed{65}}{\boxed{24}}$$

Answer:

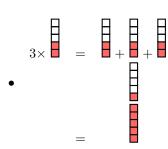
- Find a common denominator: To add fractions, they must have the same denominator.
 - Multiples of 8: 8, 16, **24**, 32, ...
 - Multiples of 6: 6, 12, 18, **24**, 30, ...
 - The smallest common denominator is **24**.

•
$$\frac{7}{8} + \frac{11}{6} = \frac{7 \times 3}{8 \times 3} + \frac{11 \times 4}{6 \times 4}$$

= $\frac{21}{24} + \frac{44}{24}$ (common denominator = 24)
= $\frac{21 + 44}{24}$
= $\frac{65}{24}$

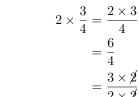
• Visual representation:

F MULTIPLYING A FRACTION BY A NUMBER

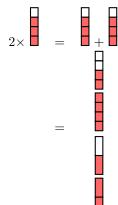

F.1 MULTIPLYING FRACTIONS BY WHOLE NUMBERS

Ex 82: Calculate and simplify:

$$3 \times \frac{2}{5} = \boxed{\frac{6}{5}}$$


Answer:

 $3 \times \frac{2}{5} = \frac{3 \times 2}{5}$ $= \frac{6}{5}$



Ex 83: Calculate and simplify:

$$2 \times \frac{3}{4} = \boxed{\frac{3}{2}}$$

$$=\frac{3}{2}$$

Ex 84: Calculate and simplify:

$$4 \times \frac{1}{6} = \boxed{\frac{2}{3}}$$

Answer:

•

$$4 \times \frac{1}{6} = \frac{4 \times 1}{6}$$

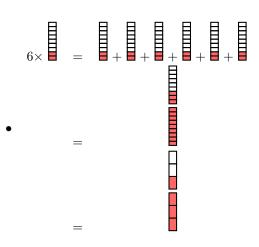
$$= \frac{4}{6}$$

$$= \frac{2 \times \cancel{2}}{3 \times \cancel{2}}$$

$$= \frac{2}{3}$$

$$= \frac{2}{3}$$

$$= \frac{2}{3}$$


Ex 85: Calculate and simplify:

$$6 \times \frac{2}{9} = \boxed{\frac{4}{3}}$$

Answer:

•

$$6 \times \frac{2}{9} = \frac{6 \times 2}{9}$$
$$= \frac{12}{9}$$
$$= \frac{4 \times \cancel{3}}{3 \times \cancel{3}}$$
$$= \frac{4}{3}$$

F.2 SOLVING REAL-WORLD PROBLEMS

Ex 86: Su has a large, delicious cake in front of her. Each time she eats, she takes $\frac{1}{4}$ of the cake. She does this 3 times. What fraction of the cake does Su eat in total?

$$\frac{\boxed{3}}{\boxed{4}}$$
 of the cake

Answer:

- Su eats $\frac{1}{4}$ of the cake 3 times, so we multiply:
 - $3 \times \frac{1}{4} = \frac{3 \times 1}{4}$ $= \frac{3}{4}$
- Su eats $\frac{3}{4}$ of the cake in total.

Ex 87: A baker is making mini-muffins. Each batch requires $\frac{2}{7}$ of a cup of batter. The baker wants to make 3 batches of mini-muffins. How much batter does the baker need in total?

Answer:

• The baker needs $\frac{2}{7}$ of a cup of batter for each batch, and is making 3 batches, so we multiply:

$$3 \times \frac{2}{7} = \frac{3 \times 2}{7}$$
$$= \frac{6}{7}$$

• The baker needs $\frac{6}{7}$ of a cup of batter in total.

Ex 88: A track is $\frac{1}{4}$ of a kilometer long. If a runner runs around the track 5 times, how many kilometers did the runner run?

$$\frac{\boxed{5}}{\boxed{4}}$$
 kilometers

Answer:

• Each lap is $\frac{1}{4}$ of a kilometer, and the runner runs 5 laps, so we multiply:

$$5 \times \frac{1}{4} = \frac{5 \times 1}{4}$$
$$= \frac{5}{4}$$
$$= 1 + \frac{1}{4}$$

• The runner ran $\frac{5}{4}$ kilometers in total.

Ex 89: A recipe for cookies calls for $\frac{2}{3}$ of a cup of sugar. If you want to make 4 batches of cookies, how many cups of sugar do you need?

$$\frac{8}{3}$$
 cups of sugar

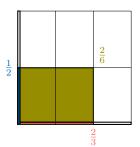
Answer:

• You need $\frac{2}{3}$ of a cup for each batch, and you are making 4 batches, so we multiply:

$$4 \times \frac{2}{3} = \frac{4 \times 2}{3}$$
$$= \frac{8}{3}$$

• You need $\frac{8}{3}$ cups of sugar in total.

G MULTIPLICATION OF FRACTIONS

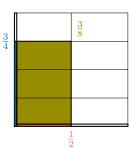

G.1 MULTIPLYING FRACTIONS

Ex 90: Calculate and simplify:

$$\frac{1}{2} \times \frac{2}{3} = \boxed{\boxed{\frac{1}{3}}}$$

Answer:

 $\frac{1}{2} \times \frac{2}{3} = \frac{1 \times \cancel{2}}{\cancel{2} \times 3}$ $= \frac{1}{3}$

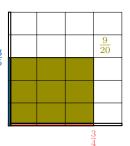


Ex 91: Calculate and simplify:

$$\frac{1}{2} \times \frac{3}{4} = \boxed{\frac{3}{8}}$$

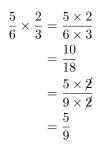
Answer:

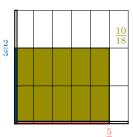
$$\frac{1}{2} \times \frac{3}{4} = \frac{1 \times 3}{2 \times 4}$$
$$= \frac{3}{8}$$



Ex 92: Calculate and simplify:

$$\frac{3}{4} \times \frac{3}{5} = \frac{\boxed{9}}{\boxed{20}}$$


Answer:


$$\frac{3}{4} \times \frac{3}{5} = \frac{3 \times 3}{4 \times 5}$$
$$= \frac{9}{20}$$

Ex 93: Calculate and simplify:

$$\frac{5}{6} \times \frac{2}{3} = \frac{\boxed{5}}{\boxed{9}}$$

G.2 MULTIPLYING FRACTIONS

Ex 94: Calculate and simplify:

$$\frac{4}{3} \times \frac{9}{5} = \boxed{12}$$

Answer:

•

$$\frac{4}{3} \times \frac{9}{5} = \frac{4 \times 9}{3 \times 5}$$
$$= \frac{36}{15}$$
$$= \frac{12 \times 3}{5 \times 3}$$
$$= \frac{12}{5}$$

Ex 95: Calculate and simplify:

$$\frac{2}{5} \times \frac{5}{8} = \boxed{\frac{1}{4}}$$

Answer:

•

$$\frac{2}{5} \times \frac{5}{8} = \frac{2 \times 5}{5 \times 8}$$
$$= \frac{10}{40}$$
$$= \frac{1 \times \cancel{10}}{4 \times \cancel{10}}$$
$$= \frac{1}{4}$$

Ex 96: Calculate and simplify:

$$\frac{3}{7} \times \frac{14}{9} = \boxed{\frac{2}{3}}$$

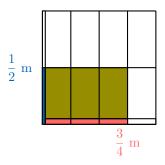
Answer:

•

$$\frac{3}{7} \times \frac{14}{9} = \frac{3 \times 14}{7 \times 9}$$
$$= \frac{42}{63}$$
$$= \frac{2 \times 21}{3 \times 21}$$
$$= \frac{2}{3}$$

Ex 97: Calculate and simplify:

$$\frac{8}{15} \times \frac{3}{4} = \boxed{\frac{2}{5}}$$


Answer:

•

$$\frac{8}{15} \times \frac{3}{4} = \frac{8 \times 3}{15 \times 4}$$
$$= \frac{24}{60}$$
$$= \frac{2 \times \cancel{\cancel{12}}}{5 \times \cancel{\cancel{12}}}$$
$$= \frac{2}{5}$$

G.3 SOLVING REAL-WORLD PROBLEMS

Ex 98:

Calculate the area of the vegetable garden:

$$\frac{\boxed{3}}{\boxed{8}} m^2$$

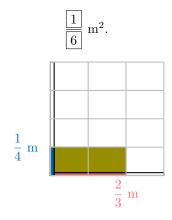
Answer:

Area = Length × Width
=
$$\frac{3}{4} \times \frac{1}{2}$$

= $\frac{3 \times 1}{4 \times 2}$
= $\frac{3}{8}$ m²

The area of the garden is $\frac{3}{8}$ m².

Ex 99: At Tariel High School, $\frac{4}{5}$ of the students are involved in extracurricular activities. Of these students, $\frac{2}{3}$ participate in fall activities. What fraction of the total student population at Tariel High School participates in fall activities?


$$15$$
 of the total students.

Answer: To find the fraction of the total student population participating in fall activities, we need to find $\frac{2}{3}$ of $\frac{4}{5}$. We multiply the fractions:

$$\frac{2}{3} \times \frac{4}{5} = \frac{2 \times 4}{3 \times 5}$$
$$= \frac{8}{15}$$

Therefore, $\frac{8}{15}$ of the total student population at Tariel High School participates in fall activities.

Ex 100: A rectangular piece of fabric is used to make a banner. The fabric is $\frac{2}{3}$ meters long and $\frac{1}{4}$ meters wide. What is the area of the banner?

Area = Length × Width
=
$$\frac{2}{3} \times \frac{1}{4}$$

= $\frac{2 \times 1}{3 \times 4}$
= $\frac{2}{12}$
= $\frac{1}{6}$ m²

The area of the banner is $\frac{1}{6}$ m².

Ex 101: A farmer has $\frac{2}{3}$ of a field planted with corn. Of that corn section, $\frac{1}{2}$ is irrigated. What fraction of the entire field is irrigated?

$$\frac{\boxed{1}}{\boxed{3}}$$
 of the field.

Answer: To find the fraction of the entire field that is irrigated, we need to find $\frac{1}{2}$ of $\frac{2}{3}$. We multiply:

$$\frac{1}{2} \times \frac{2}{3} = \frac{1 \times 2}{2 \times 3}$$
$$= \frac{2}{6}$$
$$= \frac{1}{3}$$

Therefore, $\frac{1}{3}$ of the field is irrigated.

H DIVISION OF FRACTIONS

H.1 FINDING RECIPROCALS

Ex 102: The reciprocal of $\frac{5}{7}$ is $\frac{7}{5}$.

Answer: The reciprocal of $\frac{5}{7}$ is $\frac{7}{5}$:

$$\frac{5}{7} \times \frac{7}{5} = \frac{5 \times 7}{7 \times 5} = 1.$$

Ex 103: The reciprocal of $\frac{3}{8}$ is $\frac{\boxed{8}}{\boxed{3}}$.

Answer: The reciprocal of $\frac{3}{8}$ is $\frac{8}{3}$:

$$\frac{3}{8} \times \frac{8}{3} = \frac{3 \times 8}{8 \times 3} = 1.$$

Ex 104: The reciprocal of $\frac{7}{2}$ is $\frac{2}{7}$.

Answer: The reciprocal of $\frac{7}{2}$ is $\frac{2}{7}$:

$$\frac{7}{2} \times \frac{2}{7} = \frac{7 \times 2}{2 \times 7} = 1.$$

Ex 105: The reciprocal of 4 is $\frac{1}{4}$.

Answer: The reciprocal of 4 (which can be written as $4 = \frac{4}{1}$) is $\frac{1}{4}$:

$$4 \times \frac{1}{4} = \frac{4}{1} \times \frac{1}{4} = \frac{4 \times 1}{1 \times 4} = 1.$$

H.2 DIVIDING FRACTIONS

Ex 106: Calculate and simplify:

$$\frac{1}{2} \div \frac{3}{4} = \boxed{\frac{2}{3}}$$

Anguer

$$\begin{split} \frac{1}{2} \div \frac{3}{4} &= \frac{1}{2} \times \frac{4}{3} \quad \text{(multiply by the reciprocal)} \\ &= \frac{1 \times 4}{2 \times 3} \\ &= \frac{4}{6} \\ &= \frac{2 \times \cancel{2}}{3 \times \cancel{2}} \\ &= \frac{2}{3} \end{split}$$

Ex 107: Calculate and simplify:

$$\frac{2}{3} \div \frac{1}{2} = \boxed{\frac{4}{3}}$$

Answer:

$$\frac{2}{3} \div \frac{1}{2} = \frac{2}{3} \times \frac{2}{1}$$
 (multiply by the reciprocal)
$$= \frac{2 \times 2}{3 \times 1}$$

$$= \frac{4}{2}$$

Ex 108: Calculate and simplify:

$$\frac{3}{5} \div \frac{2}{7} = \boxed{21}$$

Answer:

$$\frac{3}{5} \div \frac{2}{7} = \frac{3}{5} \times \frac{7}{2} \quad \text{(multiply by the reciprocal)}$$

$$= \frac{3 \times 7}{5 \times 2}$$

$$= \frac{21}{10}$$

$$= 2\frac{1}{10}$$

Ex 109: Calculate and simplify:

$$\frac{4}{9} \div \frac{2}{3} = \boxed{\frac{2}{3}}$$

$$\frac{4}{9} \div \frac{2}{3} = \frac{4}{9} \times \frac{3}{2} \quad \text{(multiply by the reciprocal)}$$

$$= \frac{4 \times 3}{9 \times 2}$$

$$= \frac{12}{18}$$

$$= \frac{2 \times \cancel{6}}{3 \times \cancel{6}}$$

$$= \frac{2}{-}$$

H.3 DIVIDING FRACTIONS

Ex 110: Simplify:

$$\frac{\frac{1}{2}}{\frac{3}{4}} = \frac{\boxed{2}}{\boxed{3}}$$

Answer:

$$\begin{aligned} \frac{\frac{1}{2}}{\frac{3}{4}} &= \frac{1}{2} \times \frac{4}{3} \quad \text{(multiply by the reciprocal)} \\ &= \frac{1 \times 4}{2 \times 3} \\ &= \frac{4}{6} \\ &= \frac{2 \times \cancel{2}}{3 \times \cancel{2}} \\ &= \frac{2}{3} \end{aligned}$$

Ex 111: Simplify:

$$\frac{\frac{4}{9}}{\frac{2}{3}} = \boxed{\frac{2}{3}}$$

Answer:

$$\frac{\frac{4}{9}}{\frac{2}{3}} = \frac{4}{9} \times \frac{3}{2} \quad \text{(multiply by the reciprocal)}$$

$$= \frac{4 \times 3}{9 \times 2}$$

$$= \frac{12}{18}$$

$$= \frac{2 \times \cancel{6}}{3 \times \cancel{6}}$$

$$= \frac{2}{3}$$

Ex 112: Simplify:

$$\frac{\frac{4}{3}}{\frac{5}{6}} = \frac{8}{5}$$

Answer:

$$\frac{\frac{4}{3}}{\frac{5}{6}} = \frac{4}{3} \times \frac{6}{5} \quad \text{(multiply by the reciprocal)}$$

$$= \frac{4 \times 6}{3 \times 5}$$

$$= \frac{24}{15}$$

$$= \frac{8 \times 3}{5 \times 3}$$

$$= \frac{8}{5}$$

Ex 113: Simplify:

$$\frac{\frac{4}{10}}{\frac{7}{10}} = \frac{\boxed{4}}{\boxed{7}}$$

Answer:

$$\frac{\frac{4}{10}}{\frac{7}{10}} = \frac{4}{10} \times \frac{10}{7} \quad \text{(multiply by the reciprocal)}$$

$$= \frac{4 \times \cancel{10}}{\cancel{10} \times 7}$$

$$= \frac{4}{7}$$

I SIGN CONVENTIONS FOR FRACTIONS

I.1 SIMPLIFYING WITH SIGNED NUMBERS

Ex 114: Simplify:

$$\frac{-15}{-30} = \boxed{\frac{1}{2}}$$

Answer:

$$\frac{-15}{-30} = \frac{15}{30} \qquad ((-) \div (-) = (+))$$
$$= \frac{1 \times \cancel{15}}{2 \times \cancel{15}}$$
$$= \frac{1}{2}$$

Ex 115: Simplify:

$$\frac{-9}{12} = \boxed{-\frac{3}{4}}$$

Answer:

$$\frac{-9}{12} = -\frac{9}{12} \qquad ((-) \div (+) = (-))$$
$$= -\frac{3 \times 3}{4 \times 3}$$
$$= -\frac{3}{4}$$

Ex 116: Simplify:

$$\frac{-10}{-20} = \boxed{\frac{1}{2}}$$

Answer:

$$\frac{-10}{-20} = \frac{10}{20} \qquad ((-) \div (-) = (+))$$

$$= \frac{1 \times \cancel{10}}{2 \times \cancel{10}}$$

$$= \frac{1}{2}$$

Ex 117: Simplify:

$$\frac{22}{-33} = \boxed{-\frac{2}{3}}$$

$$\frac{22}{-33} = -\frac{22}{33} \qquad ((+) \div (-) = (-))$$
$$= -\frac{2 \times 11}{3 \times 11}$$
$$= -\frac{2}{3}$$

1.2 OPERATING WITH FRACTIONS WITH SIGNED **NUMBERS**

Ex 118: Calculate and simplify:

$$\frac{1}{2} - 1 = \boxed{-\frac{1}{2}}$$

Answer:

$$\begin{aligned} \frac{1}{2} - 1 &= \frac{1}{2} - \frac{2}{2} & \left(1 = \frac{2}{2}\right) \\ &= \frac{1 - 2}{2} \\ &= \frac{-1}{2} \\ &= -\frac{1}{2} \end{aligned}$$

Ex 119: Calculate and simplify:

$$\frac{3}{4} - \frac{1}{2} = \boxed{\frac{1}{4}}$$

Answer:

$$\frac{3}{4} - \frac{1}{2} = \frac{3}{4} - \frac{2}{4} \quad \left(\frac{1}{2} = \frac{2}{4}\right)$$
$$= \frac{3-2}{4}$$
$$= \frac{1}{4}$$

Ex 120: Calculate and simplify:

$$\frac{2}{3} - \frac{3}{4} = \boxed{-\frac{1}{12}}$$

$$\frac{2}{3} - \frac{3}{4} = \frac{8}{12} - \frac{9}{12} \quad \left(\frac{2}{3} = \frac{8}{12}, \ \frac{3}{4} = \frac{9}{12}\right)$$
$$= \frac{8 - 9}{12}$$
$$= \frac{-1}{12}$$
$$= -\frac{1}{12}$$

Ex 121: Calculate and simplify:

$$\frac{-2}{3} - 2 = \boxed{-\frac{8}{3}}$$

Answer:

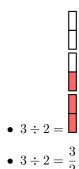
$$\frac{-2}{3} - 2 = \frac{-2}{3} - \frac{6}{3} \qquad \left(2 = \frac{6}{3}\right)$$
$$= \frac{-2 - 6}{3}$$
$$= \frac{-8}{3}$$
$$= -\frac{8}{3}$$

Ex 122: Calculate and simplify:

$$\frac{-2}{3} - \frac{-4}{3} = \boxed{\frac{2}{3}}$$

Answer:

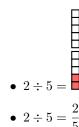
$$\frac{-2}{3} - \frac{-4}{3} = \frac{-2 - (-4)}{3}$$
$$= \frac{-2 + 4}{3}$$
$$= \frac{2}{3}$$


J **FRACTIONS** AS THE RESULT OF DIVISION

J.1 CONVERTING DIVISION TO FRACTIONS

Ex 123: Write as a fraction:

$$3 \div 2 = \boxed{3}$$


Answer:

Ex 124: Write as a fraction:

$$2 \div 5 = \boxed{2 \over 5}$$

Answer:

Ex 125: Write as a fraction:

$$3 \div 4 = \boxed{3}$$

- $3 \div 4 = \frac{3}{4}$

Ex 126: Write as a fraction:

$$5 \div 3 = \boxed{5}$$

Answer:

- $5 \div 3 = \frac{5}{3}$

DIVISION CONVERTING **FRACTIONS** TO J.2

Ex 127: Convert the fraction into a division expression:

$$\frac{2}{5} = \boxed{2} \div \boxed{5}$$

Answer: The fraction $\frac{2}{5}$ can be written as the division $2 \div 5$.

Ex 128: Convert the fraction into a division expression:

$$\frac{4}{7} = \boxed{4} \div \boxed{7}$$

Answer: The fraction $\frac{4}{7}$ can be written as the division $4 \div 7$.

Ex 129: Convert the fraction into a division expression:

$$\frac{3}{8} = \boxed{3} \div \boxed{8}$$

Answer: The fraction $\frac{3}{8}$ can be written as the division $3 \div 8$.

Ex 130: Convert the fraction into a division expression:

$$\frac{6}{9} = \boxed{6} \div \boxed{9}$$

 ${}_{Answer:}$ The fraction $\frac{6}{9}$ can be written as the division $6 \div 9.$

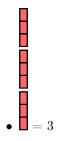
CONVERTING FRACTIONS TO WHOLE **J.3 NUMBERS**

Ex 131: Convert the fraction into a whole number:

$$\frac{4}{2} = \boxed{2}$$

Answer:

$$\bullet \ \frac{4}{2} = 4 \div 2$$



Ex 132: Convert the fraction into a whole number:

$$\frac{9}{3} = \boxed{3}$$

Answer:

$$\bullet \frac{9}{3} = 9 \div 3$$
$$= 3$$

Ex 133: Convert the fraction into a whole number:

$$\frac{8}{4} = \boxed{2}$$

Answer:

$$\bullet \quad \frac{8}{4} = 8 \div 4$$
$$= 2$$

Ex 134: Convert the fraction into a whole number:

$$\frac{5}{5} = \boxed{1}$$

Answer:

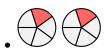
J.4 FINDING FRACTIONS IN WORD PROBLEMS

Ex 135: Four friends share 3 cakes equally. What fraction does each friend get?

• When you share equally, you divide the 3 cakes by 4 friends:

$$3 \div 4 = \frac{3}{4}$$

• So, each friend gets $\frac{3}{4}$ of a cake.


Ex 136: Five friends share 2 pizzas equally. What fraction does each friend get?

$$\begin{array}{|c|c|c|}
\hline 2 \\
\hline 5 \\
\hline
\end{array}$$
 of a pizza

Answer

• When you share equally, you divide the 2 pizzas by 5 friends:

$$2 \div 5 = \frac{2}{5}$$

• So, each friend gets $\frac{2}{5}$ of a pizza.

Ex 137: A couple shares 5 chocolate bars equally. What fraction of a chocolate bar does each person get?

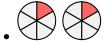
$$\frac{\boxed{5}}{\boxed{2}}$$
 of a chocolate bar

Answer:

 When you share equally, you divide the 5 chocolate bars by 2 people:

$$5 \div 2 = \frac{5}{2}$$

• So, each person gets $\frac{5}{2}$ chocolate bars, which is 2 whole bars and half of another one.


Ex 138: Six family members share 2 apple pies equally. What fraction of a pie does each family member get?

$$\frac{\boxed{2}}{\boxed{6}}$$
 of a pie

Answer:

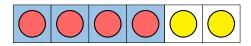
• When you share equally, you divide the 2 apple pies by 6 family members:

$$2 \div 6 = \frac{2}{6}$$

• So, each family member gets $\frac{2}{6}$ of an apple pie.

K FRACTION AS A RATIO AND OPERATOR

K.1 IDENTIFYING FRACTIONS IN REAL-LIFE CONTEXTS

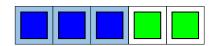

Ex 139:

What fraction of the circles are red? (Simplify your answer.)

Answer:

- There are 6 circles.
- 4 of the circles are red.

• $\frac{4}{6} = \frac{2}{3}$ of the circles are red.


Ex 140:

What fraction of the squares are blue? (Simplify your answer.)

Answer:

- There are 5 squares.
- 3 of the squares are blue.

• $\frac{3}{5}$ of the squares are blue.

Ex 141:

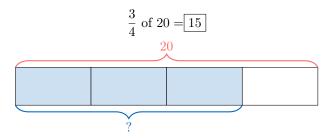
What fraction of the children are girls? (Simplify your answer.)

 $\boxed{ 1 }$ of the children are girls.

- There are 4 children.
- 2 of the children are girls.
- $\frac{2}{4} = \frac{1}{2}$ of the children are girls.

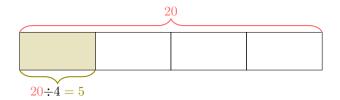
Ex 142:

What fraction of the children raised their hand? (Simplify your answer.)

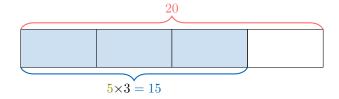

1 of the children raised their hand.

Answer:

- There are 4 children.
- 1 of the children raised their hand.
- $\frac{1}{4}$ of the children raised their hand.

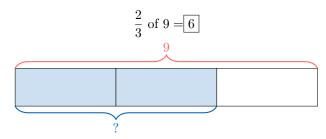

K.2 CALCULATING FRACTIONS OF A WHOLE

Ex 143:

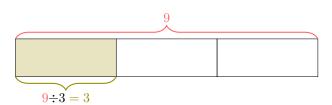


Answer:

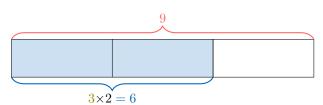
• Find the quantity of 1 part:



• Find the quantity of 3 parts:

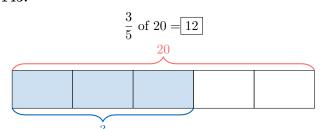

•
$$\frac{3}{4}$$
 of $20 = 15$

Ex 144:

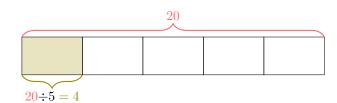


Answer:

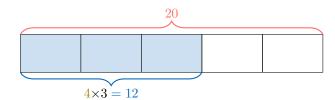
• Find the quantity of 1 part:



• Find the quantity of 2 parts:

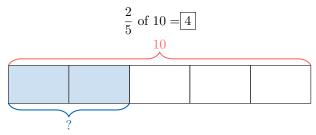

•
$$\frac{2}{3}$$
 of $9 = 6$

Ex 145:

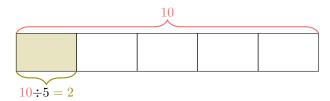


Answer:

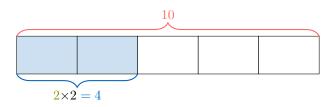
• Find the quantity of 1 part:



• Find the quantity of 3 parts:


• $\frac{3}{5}$ of 20 = 12

Ex 146:

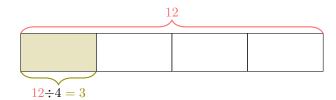


Answer:

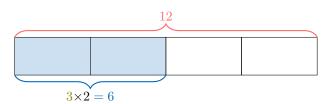
• Find the quantity of 1 part:

• Find the quantity of 2 parts:

•
$$\frac{2}{5}$$
 of $10 = 4$


Ex 147:

$$\frac{2}{4} \text{ of } 12 = \boxed{6}$$

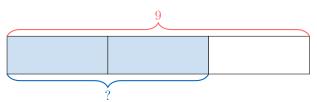

$$12$$

Answer:

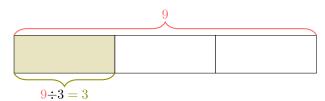
• Find the quantity of 1 part:

• Find the quantity of 2 parts:

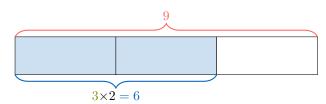
•
$$\frac{2}{4}$$
 of $12 = 6$


K.3 APPLYING FRACTIONS TO REAL-WORLD PROBLEMS

Ex 148: In a class of 9 students, $\frac{2}{3}$ of the students are girls. How many of the students are girls?


Answer:

• Method 1 (unitary method):

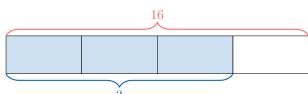

- Number of girls =
$$\frac{2}{3}$$
 of 9

- Find the quantity of 1 part:

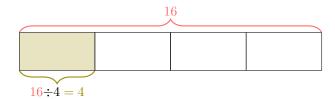
- Find the quantity of 2 parts:

$$-\frac{2}{3}$$
 of $9=6$

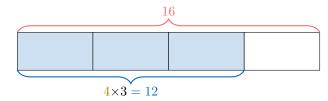
• Method 2 (calculation using a formula):


Number of girls =
$$\frac{2}{3}$$
 of 9
= $\frac{2}{3} \times 9$
= $(2 \times 9) \div 3$
= 6

Ex 149: In a group of 16 fruits, $\frac{3}{4}$ of them are apples. How many of the fruits are apples?


Answer.

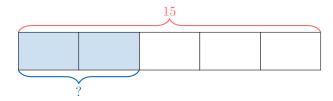
• Method 1 (unitary method):


- Number of apples =
$$\frac{3}{4}$$
 of 16

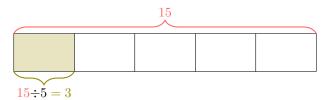
- Find the quantity of 1 part:

- Find the quantity of 3 parts:

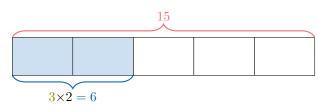
$$-\frac{3}{4}$$
 of $16 = 12$


• Method 2 (calculation using a formula):

Number of apples =
$$\frac{3}{4}$$
 of 16
= $\frac{3}{4} \times 16$
= $(3 \times 16) \div 4$
= 12


Ex 150: In a collection of 15 books, $\frac{2}{5}$ of them are novels. How many of the books are novels?

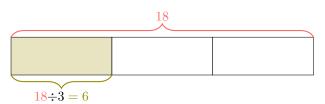
Answer:


- Method 1 (unitary method):
 - Number of novels = $\frac{2}{5}$ of 15

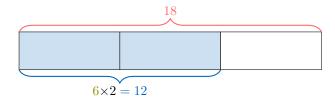
- Find the quantity of 1 part:

- Find the quantity of 2 parts:

$$-\frac{2}{5}$$
 of $15=6$


• Method 2 (calculation using a formula):

Number of novels =
$$\frac{2}{5}$$
 of 15
= $\frac{2}{5} \times 15$
= $(2 \times 15) \div 5$
= 6


Ex 151: For a refreshing drink recipe, the mixture consists of $\frac{1}{3}$ lemon and $\frac{2}{3}$ water for a total of 18 cl. How much lemon and water are used in the drink?

Answer:

- Method 1 (unitary method):
 - Total volume = 18 cl
 - Find the quantity of 1 part (which represents the lemon part):

Find the quantity of 2 parts (which represents the water part):

$$-\frac{1}{3} \text{ of } 18 \text{ cl} = 6 \text{ cl of lemon}$$
$$-\frac{2}{3} \text{ of } 18 \text{ cl} = 12 \text{ cl of water}$$

• Method 2 (calculation using a formula):

Quantity of lemon =
$$\frac{1}{3}$$
 of 18
= $\frac{1}{3} \times 18$
= $(1 \div 3) \times 18$
= 6 cl of lemon

Quantity of water
$$=\frac{2}{3}$$
 of 18
 $=\frac{2}{3} \times 18$
 $=(2 \times 18) \div 3$
 $=12$ cl of water

L FRACTIONS AS DECIMAL NUMBERS

L.1 CONVERTING FRACTIONS TO DECIMALS

Convert to a decimal number:

$$\frac{3}{4} = 0.75$$

Answer:

• Division Method:

$$\frac{3}{4} = 3 \div 4$$
$$= 0.75$$

$$\begin{array}{r}
0.75 \\
4)3.00 \\
\underline{2.8} \\
20 \\
\underline{20} \\
0
\end{array}$$

• Power of 10 Denominator Method:

$$\frac{3}{4} = \frac{3 \times 25}{4 \times 25}$$

$$= \frac{75}{100}$$

$$= 75 \div 100$$

$$= 0.75$$

Convert to a decimal number:

$$\frac{2}{5} = \boxed{0.4}$$

Answer:

• Division Method:

$$\frac{2}{5} = 2 \div 5$$
$$= 0.4$$

$$5)\frac{0.4}{2.0}$$
 $\frac{2.0}{0}$

• Power of 10 Denominator Method:

$$\frac{2}{5} = \frac{2 \times 2}{5 \times 2}$$
$$= \frac{4}{10}$$
$$= 4 \div 10$$

Convert to a decimal number:

$$\frac{3}{20} = \boxed{0.15}$$

Answer:

• Division Method:

$$\frac{3}{20} = 3 \div 20$$
$$= 0.15$$

$$\begin{array}{r}
0.15 \\
20 \overline{\smash{\big)}\,3.00} \\
\underline{2.0} \\
1.00 \\
\underline{1.00} \\
0
\end{array}$$

• Power of 10 Denominator Method:

$$\frac{3}{20} = \frac{3 \times 5}{20 \times 5}$$

$$= \frac{15}{100}$$

$$= 15 \div 100$$

$$= 0.15$$

Convert to a decimal number:

$$\frac{40}{50} = \boxed{0.8}$$

Answer:

• Division Method:

$$\frac{40}{50} = 40 \div 50 = 0.8$$

$$\begin{array}{r}
0.8 \\
50 \overline{\smash{\big)}\,40.0} \\
\underline{40.0} \\
0
\end{array}$$

• Power of 10 Denominator Method:

$$\frac{40}{50} = \frac{40 \times 2}{50 \times 2}$$

$$= \frac{80}{100}$$

$$= 80 \div 100$$

$$= 0.8$$

L.2 CONVERTING DECIMALS TO FRACTIONS

Ex 156: Convert to a fraction:

$$1.3 = \boxed{13}$$

$$1.3 = \frac{1.3 \times 10}{10}$$
$$= \frac{13}{10}$$

Ex 157: Convert 0.3 to a fraction:

$$0.3 = \boxed{3}$$

Answer:

$$0.3 = \frac{0.3 \times 10}{10}$$
$$= \frac{3}{10}$$

Ex 158: Convert 10.7 to a fraction:

$$10.7 = \boxed{\frac{107}{\boxed{10}}}$$

Answer:

$$10.7 = \frac{10.7 \times 10}{10}$$
$$= \frac{107}{10}$$

Ex 159: Convert 0.99 to a fraction:

$$0.99 = \frac{99}{100}$$

Answer:

$$0.99 = \frac{0.99 \times 100}{100}$$
$$= \frac{99}{100}$$

M REPRESENTING FRACTIONS GREATER THAN ONE

M.1 SOLVING REAL-WORLD PROBLEMS

Ex 160: I eat $\frac{5}{2}$ of a pain au chocolat:

So I eat $\boxed{2}$ whole pains au chocolat and $\boxed{\frac{1}{2}}$ of another pain au chocolat.

Answer:
$$\frac{5}{2} = \frac{2 \times 2 + 1}{2}$$
 (division by 2: $5 = 2 \times 2 + 1$)
$$= \frac{2 \times \cancel{2}}{\cancel{2}} + \frac{1}{2}$$

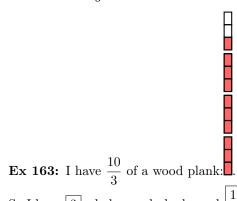
$$= 2 + \frac{1}{2}$$

Ex 161: I eat $\frac{5}{4}$ of a pizza:

So I eat $\boxed{1}$ whole pizza and $\boxed{\frac{1}{4}}$ of another pizza.

Answer:
$$\frac{5}{4} = \frac{1 \times 4 + 1}{4}$$
 (division by 4: $5 = 1 \times 4 + 1$)
$$= \frac{1 \times \cancel{4}}{\cancel{4}} + \frac{1}{4}$$

$$= 1 + \frac{1}{4}$$


Ex 162: I have $\frac{11}{6}$ of a ribbon:

So I have $\boxed{1}$ whole ribbon and $\boxed{\frac{5}{6}}$ of another ribbon.

Answer:
$$\frac{11}{6} = \frac{1 \times 6 + 5}{6}$$
 (division by 6: $11 = 1 \times 6 + 5$)
$$= \frac{1 \times \cancel{6}}{\cancel{6}} + \frac{5}{6}$$

$$= 1 + \frac{5}{6}$$

$$= 1\frac{5}{6}$$

So I have $\boxed{3}$ whole wood planks and $\boxed{\frac{1}{3}}$ of another wood plank.

Answer:
$$\frac{10}{3} = \frac{3 \times 3 + 1}{3}$$
 (division by 3: $10 = 3 \times 3 + 1$)
$$= \frac{3 \times 3}{3} + \frac{1}{3}$$

$$= 3 + \frac{1}{3}$$

$$= 3\frac{1}{2}$$

M.2 FINDING MIXED NUMBERS FROM BAR MODELS


Ex 164: Write the mixed number shown in the diagram:

Answer:

•
$$= 2 + \frac{1}{3} = 2\frac{1}{3}$$

Ex 165: Write the mixed number shown in the diagram:

•
$$= 2 + \frac{3}{4} = 2\frac{3}{4}$$

Ex 166: Write the mixed number shown in the diagram:

$$=\boxed{4}\boxed{\frac{1}{2}}$$

Answer:

•
$$= 4 + \frac{1}{2} = 4\frac{1}{2}$$

Ex 167: Write the mixed number shown in the diagram:

$$= \boxed{3} \boxed{\frac{3}{4}}$$

Answer:

•
$$3 + \frac{3}{4} = 3\frac{3}{4}$$

Ex 168: Write the mixed number shown in the diagram:

$$= \boxed{4} + \boxed{2}$$

Answer:

•
$$4 + \frac{2}{5} = 4\frac{2}{5}$$

M.3 FINDING FRACTIONS FROM MIXED NUMBERS

Ex 169: Convert into improper fraction:

$$2\frac{1}{3} = \boxed{\frac{7}{3}}$$

Answer:

•
$$2\frac{1}{3} = 2 + \frac{1}{3}$$

 $= \frac{2 \times 3}{1 \times 3} + \frac{1}{3}$ $\left(2 = \frac{2}{1}\right)$
 $= \frac{6}{3} + \frac{1}{3}$
 $= \frac{7}{3}$

•

Ex 170: Convert into an improper fraction:

$$3\frac{2}{5} = \frac{\boxed{17}}{\boxed{5}}$$

Answer:

•
$$3\frac{2}{5} = 3 + \frac{2}{5}$$

 $= \frac{3 \times 5}{1 \times 5} + \frac{2}{5} \quad \left(3 = \frac{3}{1}\right)$
 $= \frac{15}{5} + \frac{2}{5}$
 $= \frac{17}{5}$

•

Ex 171: Convert into an improper fraction:

$$2\frac{3}{4} = \boxed{\frac{11}{4}}$$

Answer:

•
$$2\frac{3}{4} = 2 + \frac{3}{4}$$

= $\frac{2 \times 4}{1 \times 4} + \frac{3}{4}$ $\left(2 = \frac{2}{1}\right)$
= $\frac{8}{4} + \frac{3}{4}$
= $\frac{11}{4}$

•

Ex 172: Convert into an improper fraction:

$$4\frac{1}{2} = \boxed{\frac{9}{2}}$$

Answer.

•
$$4\frac{1}{2} = 4 + \frac{1}{2}$$

$$= \frac{4 \times 2}{1 \times 2} + \frac{1}{2} \quad \left(4 = \frac{4}{1}\right)$$

$$= \frac{8}{2} + \frac{1}{2}$$

$$= \frac{9}{2}$$

M.4 FINDING MIXED NUMBERS FROM FRACTIONS

Ex 173: Convert into mixed number:

$$\frac{3}{2} = \boxed{1} \boxed{\frac{1}{\boxed{2}}}$$

Answer:

•
$$\frac{3}{2} = \frac{1 \times 2 + 1}{2}$$
 (division of 3 by 2: $3 = 1 \times 2 + 1$)
$$= \frac{1 \times \cancel{2}}{\cancel{2}} + \frac{1}{2}$$

$$= 1 + \frac{1}{2}$$

$$= 1\frac{1}{2}$$

•
$$\frac{3}{2} = \frac{1}{2} = 1 + \frac{$$

Ex 174: Convert into a mixed number:

$$\frac{7}{3} = \boxed{2} \boxed{\frac{1}{3}}$$

•
$$\frac{7}{3} = \frac{2 \times 3 + 1}{3}$$
 (division of 7 by 3: $7 = 2 \times 3 + 1$)
$$= \frac{2 \times \cancel{3}}{\cancel{3}} + \frac{1}{3}$$

$$= 2 + \frac{1}{3}$$

$$= 2\frac{1}{3}$$

•
$$\frac{7}{3} = 2 + \frac{1}{3} = 2$$

Ex 175: Convert into a mixed number:

$$\frac{9}{2} = \boxed{4} \boxed{\frac{1}{2}}$$

Answer

•
$$\frac{9}{2} = \frac{4 \times 2 + 1}{2}$$
 (division of 9 by 2: $9 = 4 \times 2 + 1$)
$$= \frac{4 \times \cancel{2}}{\cancel{2}} + \frac{1}{2}$$

$$= 4 + \frac{1}{2}$$

$$= 4\frac{1}{2}$$

•
$$\frac{9}{2}$$
 = $4 + \frac{1}{2} = 4\frac{1}{2}$

Ex 176: Convert into a mixed number:

$$\frac{13}{5} = \boxed{2} \boxed{\frac{3}{5}}$$

Answer:

•
$$\frac{13}{5} = \frac{2 \times 5 + 3}{5}$$
 (division of 13 by 5: $13 = 2 \times 5 + 3$)
= $\frac{2 \times \cancel{5}}{\cancel{5}} + \frac{3}{5}$
= $2 + \frac{3}{5}$
= $2 + \frac{3}{5}$

•
$$\frac{13}{5} = 2 + \frac{3}{5} = 2$$

N ORDER OF OPERATIONS

N.1 EVALUATING AND SIMPLIFYING EXPRESSIONS WITH FRACTIONS

Ex 177: Evaluate and simplify:

$$3 \times \frac{1}{2} + 1 = \boxed{\frac{5}{2}}$$

Answer:

$$3 \times \frac{1}{2} + 1 = \frac{3 \times 1}{2} + 1$$
 (writing 3 as numerator)
 $= \frac{3}{2} + \frac{2}{2}$ ($1 = \frac{2}{2}$)
 $= \frac{3+2}{2}$ (adding with common denominator)
 $= \frac{5}{2}$ (simplifying the result)

Ex 178: Evaluate and simplify:

$$\frac{2+\frac{1}{2}}{\frac{1}{4}} = \boxed{10}$$

Answer:

$$\frac{2+\frac{1}{2}}{\frac{1}{4}} = \frac{\frac{4}{2}+\frac{1}{2}}{\frac{1}{4}} \qquad \left(2=\frac{2}{1}=\frac{4}{2}\right)$$

$$=\frac{\frac{4+1}{2}}{\frac{1}{4}}$$

$$=\frac{\frac{5}{2}}{\frac{1}{4}}$$

$$=\frac{\frac{5}{2}\times\frac{4}{1}}{\frac{4}} \qquad \text{(multiplying by the reciprocal)}$$

$$=\frac{5\times4}{2\times1}$$

$$=\frac{20}{2}$$

$$=10 \qquad \text{(simplifying the result)}$$

 $\mathbf{Ex}\ \mathbf{179:}\ \mathbf{Evaluate}\ \mathbf{and}\ \mathbf{simplify:}$

$$\frac{3 + \frac{3}{4}}{\frac{1}{2}} = \boxed{\frac{15}{2}}$$

Answer:

$$\frac{3+\frac{3}{4}}{\frac{1}{2}} = \frac{\frac{12}{4}+\frac{3}{4}}{\frac{1}{2}} \qquad \left(3 = \frac{12}{4}\right)$$

$$= \frac{\frac{12+3}{4}}{\frac{1}{2}}$$

$$= \frac{\frac{15}{4}}{\frac{1}{2}}$$

$$= \frac{15}{4} \times \frac{2}{1} \qquad \text{(multiplying by the reciprocal)}$$

$$= \frac{15 \times \cancel{2}}{\cancel{2} \times 2 \times 1}$$

$$= \frac{15}{2} \qquad \text{(simplifying the result)}$$

Ex 180: Evaluate and simplify:

$$\frac{2 + \frac{1}{2}}{1 + \frac{2}{3}} = \boxed{\frac{3}{2}}$$

$$\frac{2+\frac{1}{2}}{1+\frac{2}{3}} = \frac{\frac{4}{2}+\frac{1}{2}}{\frac{3}{3}+\frac{2}{3}} \qquad \left(2 = \frac{4}{2}, \ 1 = \frac{3}{3}\right)$$

$$= \frac{\frac{4+1}{2}}{\frac{3+2}{3}}$$

$$= \frac{\frac{5}{2}}{\frac{5}{3}}$$

$$= \frac{\frac{5}{2}}{\frac{5}{3}}$$

$$= \frac{5}{2} \times \frac{3}{5} \qquad \text{(multiplying by the reciprocal)}$$

$$= \frac{5\times 3}{2\times 5}$$

$$= \frac{\cancel{5}\times 3}{2\times \cancel{5}}$$

$$= \frac{3}{2} \qquad \text{(simplifying the result)}$$