FRACTIONS

A DEFINITIONS

Discover: Hugo is very hungry after playing soccer. His dad baked two identical cakes. Hugo eats one whole cake:

Then, Hugo is still hungry, so he eats half of the second cake:

How much cake does Hugo eat in total? Write your answer as a fraction.

• Hugo eats one whole cake and half of another cake.

• The numerator (top number) shows how many parts Hugo eats: 3.

- The denominator (bottom number) shows how many equal parts make one cake: 2.
- So Hugo eats $\frac{3}{2}$ cakes in total.

Definition **Fraction**

A fraction includes two numbers: the numerator and the denominator, separated by a bar.

B ON THE NUMBER LINE

Discover:

• Hugo is walking along a path.

• He stops and asks himself, "Where am I?"

C EQUIVALENT FRACTIONS

Discover: Mr. Tariel has a cake that he cuts into 3 equal parts. He plans to give 1 part to his son, Louis.

Louis says, "I want 2 pieces!"

His dad replies, "Alright," and cuts each of the **3 parts** in half, making **6 smaller equal parts**. He then gives Louis **2 of these smaller pieces**.

Louis looks at his plate and feels disappointed. Why is Louis still not happy?

Answer: Even though Louis got **2** pieces instead of 1, the total amount of cake he received is the same as before. His dad just cut the cake into smaller pieces.

		_
Ħ		
	=	

In fractions:

 $\frac{1}{3}=\frac{2}{6}$

Definition Equivalent Fractions _

• When you multiply the numerator and the denominator by the same number, the fractions are equals.

• When you divide the numerator and the denominator by the same number, the fractions are equals.

D SIMPLIFICATION

Discover: Pizza Time! Louis eats $\frac{6}{12}$ of a pizza. Hugo says, "Hey, $\frac{6}{12}$ is the same as $\frac{1}{2}$. It's easier to understand if you simplify the fraction!".

- Louis: "How is $\frac{1}{2}$ easier?"
- Hugo: "Because $\frac{1}{2}$ is the simplified form of $\frac{6}{12}$. It means you ate 1 out of 2 slices instead of 6 out of 12 slices. It's the same amount of pizza, but it's simpler to understand!"

Method **Simplifying a fraction**

To simplify a fraction, we find an equivalent fraction with the smallest possible numerator and denominator.

Who eats more cake?

Answer:

- We need to compare the fractions $\frac{3}{4}$ and $\frac{5}{8}$.
- To compare fractions, the pieces must be the same size. We do this by finding a common denominator.
- Convert $\frac{3}{4}$ to an equivalent fraction with denominator 8:

- Now, Hugo eats $\frac{6}{8}$ of the cake and Louis eats $\frac{5}{8}$.
- Since $\frac{6}{8} > \frac{5}{8}$, Hugo eats more cake.

- Definition Ordering Fractions with the Same Denominator _____

For two fractions with the same denominator, the fraction with the larger numerator is larger.

```
Ex: Compare \frac{3}{4} and \frac{2}{4}.
```


Method Comparing Fractions with Different Denominators

To compare two fractions with different denominators:

- Find a common denominator.
- Convert each fraction to an equivalent fraction with that denominator.
- Compare the numerators.

Ex: Compare $\frac{1}{2}$ and $\frac{3}{4}$.

Answer:

• Since $\frac{1}{2}$ and $\frac{3}{4}$ have different denominators, we change $\frac{1}{2}$ into an equivalent fraction with denominator 4:

=	$\frac{1}{2} = \frac{2}{4}$	_
	$\frac{2}{4} < \frac{3}{4}$	
	$\frac{1}{2} < \frac{3}{4}$	

- Compare the numerators:
- Therefore,
- In pictures:

(°<u>+</u>°)

F ADDITION AND SUBTRACTION WITH COMMON DENOMINATORS

Discover: Hugo eats $\frac{2}{4}$ of a cake: and Louis eats $\frac{1}{4}$ of the same cake: Which fraction of the cake have Hugo and Louis eaten together?

Answer:

So Hugo and Louis eat $\frac{3}{4}$ of the cake together:

- Definition Addition of Fractions with Common Denominators

When we **add** fractions with common denominators, we keep the denominator the same and add the numerators:

	_		=	X
$\frac{3}{4}$	_	$\frac{1}{4}$	=	$\frac{2}{4}$

G ADDITION AND SUBTRACTION WITH DIFFERENT DENOMINATORS

Discover: Hugo eats $\frac{1}{2}$ of a cake: and Louis eats $\frac{1}{4}$ of the same cake: What fraction of the cake have Hugo and Louis eaten together?

Answer:

• Step 1: Find a common denominator: To add the fractions, we need equal-sized parts. Divide each of Hugo's parts into two smaller parts:

So, Hugo eats
$$\frac{1}{2} = \frac{2}{4}$$
 of the cake.

• Step 2: Add the fractions using the common denominator: Now, we can add the two fractions:

• Step 3: Final Answer: Hugo and Louis eat $\frac{3}{4}$ of the cake together:

Method Addition or Subtraction of Fractions with Different Denominators To add or subtract fractions with different denominators:

- Find a common denominator: Choose a common multiple of the denominators.
- Convert each fraction: Rewrite each fraction so it has the common denominator.
- Add or subtract the numerators: Add or subtract the numerators and keep the denominator the same.

Ex: Calculate $\frac{3}{4} + \frac{5}{6}$.

Answer:

- Find a common denominator: To add fractions, they must have the same denominator.
 - Multiples of 4: 4, 8, **12**, 16, 20, ...
 - Multiples of 6: 6, **12**, 18, 24, ...
 - The smallest common denominator is **12**.
- $\frac{3}{4} + \frac{5}{6} = \frac{3 \times 3}{4 \times 3} + \frac{5 \times 2}{6 \times 2}$ $= \frac{9}{12} + \frac{10}{12}$ (common denominator = 12) $= \frac{9 + 10}{12}$ (adding numerators) $= \frac{19}{12}$
- Visual representation:

H FRACTION AS QUOTIENT

Discover: Two cakes are shared equally among three people.

- 1. Use the figure to determine what fraction of the cakes each person receives.
- 2. Copy and complete: ... cakes \div ... people = $\stackrel{\dots}{-}$ of a cake each.

Answer:

1. Each cake is divided into three equal parts. Each person receives one piece from each cake, totaling two pieces. Since each cake is divided into three parts, each piece represents $\frac{1}{3}$ of a cake. Therefore, each person receives:

2. 2 cakes \div 3 people = $\frac{2}{3}$ of a cake each.

Proposition Fraction as Quotient

A fraction is a quotient that represents the result of **division**. It tells us how much of something we have when we divide it into equal parts.

- The top number (numerator) is the whole.
- The bottom number (denominator) is the number of equal parts the whole is divided into.

The fraction $\frac{2}{3}$ is the same as saying "2 divided by 3".

The fraction $\frac{2}{3}$ is the number which, when multiplied by 3, gives 2:

$$\frac{2}{3} \times 3 = 2$$

I FRACTION AS RATIO

Discover: In a class of 30 students, $\frac{2}{3}$ of the students are girls. How many students are girls?

Answer: The fraction $\frac{2}{3}$ represents the ratio of girls to the total number of students. We can visualize this problem using a bar model:

- Method 1 (unitary method):
 - Divide the total number of students by the denominator of the fraction to find how many students are in each part:

This means each part contains 10 students.

- Multiply the result by the numerator to find how many students are girls:

So, there are 20 girls.

• Method 2 (calculation using a formula):

Number of girls =
$$\frac{2}{3}$$
 of 30
= $\frac{2}{3} \times 30$
= $(2 \div 3) \times 30$
= 20

Definition Fractions as Ratios -

A fraction can represent the ratio of part to the whole:

Ex: There are 3 apples in Hugo's basket. 2 of the apples are red.

2 $\overline{3}$

The fraction (ratio) of red apples is:

- Multiply the result by the numerator to find the desired quantity:

 $= (2 \div 3) \times 30$

 $\frac{2}{3}$ of $\frac{30}{3} = \frac{2}{3} \times \frac{30}{3}$

= 20

• Method 2 (calculation using a formula):

Discover: Decimals and fractions can both be used to describe values between whole numbers. We can convert:

• Fraction into Decimal: Perform the division of the numerator by the denominator. For example,

$$\frac{1}{2} = 1 \div 2$$
$$= 0.5$$

• Decimal into Fraction: Multiply the decimal by a power of 10 (10, 100, 1000, ...) to eliminate the decimal point. Then, write the result over the same power of 10 to form a fraction. For example:

$$1.3 = \frac{1.3 \times 10}{10} \\ = \frac{13}{10}$$

Method Converting a Fraction to a Decimal

- **Division Method**: Perform the division of the numerator by the denominator.
- Power of 10 Denominator Method: Find an equivalent fraction where the denominator is a power of 10.

Ex: Convert $\frac{3}{4}$ to a decimal number.

Answer:

• Division Method:

$$\frac{3}{4} = 3 \div 4 \\ = 0.75 \\ 4 \overline{\smash{\big)}3.00} \\ \frac{2.8}{20} \\ 20$$

0

• Power of 10 Denominator Method:

$$\frac{3}{4} = \frac{3 \times 25}{4 \times 25}$$
$$= \frac{75}{100}$$
$$= 975 \div 100$$
$$= 0.75$$

(+)

Method Converting Decimal to Fraction _

- Multiply the decimal by a power of 10 (10, 100, 1000, ...) to eliminate the decimal point.
- Write the result over the same power of 10 to form a fraction.

Ex: Convert 1.3 to a fraction.

Answer:

$$1.3 = \frac{1.3 \times 10}{10} \\ = \frac{13}{10}$$

K PROPER AND IMPROPER FRACTIONS

Discover: You have $\frac{5}{2}$ of a pain au chocolat: How can you represent this amount in simple way?

Answer: You have 2 whole pains au chocolat and $\frac{1}{2}$ of another pain au chocolat. Is it easier to think of $\frac{5}{2}$ as $2 + \frac{1}{2}$? This is the concept of a mixed number.

Definition Proper and improper fractions -

- A fraction which has numerator less than its denominator is called a **proper fraction**.
- A fraction which has numerator greater than its denominator is called an **improper fraction**.

Definition Mixed Number

A **mixed number** is a representation of a number that combines a whole number and a proper fraction. By standard convention, the addition symbol is implied and thus not explicitly written:

$$1\frac{2}{3}$$
 is understood as $1 + \frac{2}{3} =$