### FRACTIONS

### A DEFINITIONS

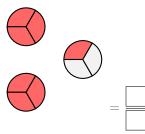
### A.1 FINDING FRACTIONS

 $\mathbf{Ex}$  1: A bar represents 1. Find the fraction that represents the shaded part:



**Ex 2:** A bar represents 1. Find the fraction that represents the shaded part:




**Ex 3:** A bar represents 1. Find the fraction that represents the shaded part:



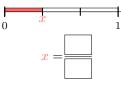
**Ex 4:** A circle represents 1. Find the fraction that represents the shaded part:



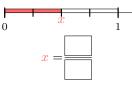
**Ex 5:** A circle represents 1. Find the fraction that represents the shaded part:



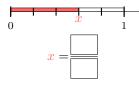
### A.2 WRITING FRACTIONS FROM WORDS


**Ex 6:** Write as fraction:

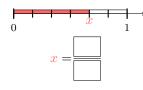


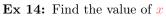

### **B** ON THE NUMBER LINE

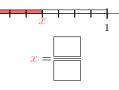
### B.1 FINDING FRACTIONS WITH BAR FRACTION MODEL


**Ex 10:** Find the value of x



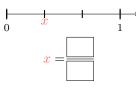

**Ex 11:** Find the value of x



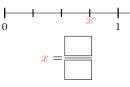


**Ex 12:** Find the value of x



**Ex 13:** Find the value of x

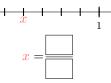





### **B.2 FINDING FRACTIONS**

**Ex 15:** Find the value of x

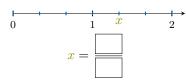



**Ex 16:** Find the value of x

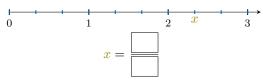


**Ex 17:** Find the value of x

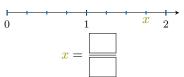
0




**Ex 18:** Find the value of x


 $\begin{array}{c|c} & & \\ & & \\ 0 & & \\ & & \\ \end{array} \begin{array}{c} \\ x \\ & \\ \end{array} \begin{array}{c} \\ 1 \end{array}$ x = =

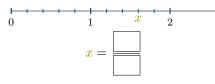
### **B.3 FINDING FRACTIONS GREATER THAN 1**


**Ex 19:** Find the value of x

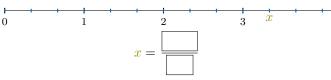


**Ex 20:** Find the value of x




**Ex 21:** Find the value of x




**Ex 22:** Find the value of x

 $\begin{smallmatrix} & & & & \\ 0 & & & 1 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$ x =

**Ex 23:** Find the value of x



**Ex 24:** Find the value of x



### C EQUIVALENT FRACTIONS

### C.1 FINDING THE MISSING NUMERATOR

Ex 25:

 $\frac{2}{4} = \frac{2}{2}$ 

Ex 26:



Ex 27:

Ex 28:

Ex 29:

 $\frac{16}{12} = \frac{16}{3}$ 

 $\frac{5}{10} = \frac{1}{2}$ 

 $\frac{4}{10} = \frac{1}{5}$ 

### C.2 FINDING THE MISSING NUMERATOR

Ex 30:

Ex 31:





Ex 32:

Ex 33:

Ex 34:





 $\frac{7}{8} = \frac{1}{32}$ 

### C.3 FINDING THE MISSING DENOMINATOR

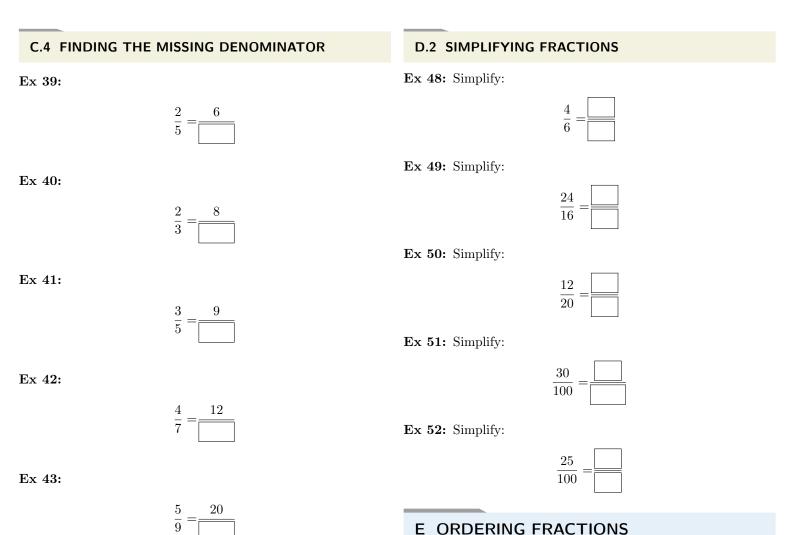
Ex 35:

Ex 36:





 $\frac{9}{6} = \frac{3}{1}$ 


 $\frac{12}{10} = \frac{6}{10}$ 





Ex 38:





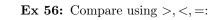
### D SIMPLIFICATION

### D.1 SIMPLIFYING FRACTIONS

Ex 44: Simplify:

 $\frac{4}{6} =$ 

Ex 45: Simplify:




Ex 46: Simplify:



Ex 47: Simplify:





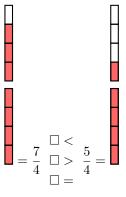
**BAR MODELS** 

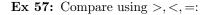
**Ex 53:** Compare using >, <, =:

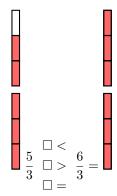
**Ex 54:** Compare using >, <, =:

**Ex 55:** Compare using >, <, =:

**E.1 COMPARING WITH SAME DENOMINATOR WITH** 


 $\Box < \Box = \frac{1}{4} \Box > \frac{2}{4} = \Box$ 


 $= \frac{3}{5} \square < \frac{2}{5} =$ 


 $= \frac{4}{7} \quad \square > \quad \frac{3}{7} =$ 

(\*<u>+</u>)

www.commeunjeu.com







#### E.2 COMPARING WITH SAME DENOMINATOR

**Ex 58:** Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{7}{3} \square > \frac{6}{3} \\ \square = \end{array}$$

**Ex 59:** Compare using >, <, =:

$$\begin{array}{c}
\Box < \\
5 \\
\overline{4} \\
\Box > \\
\overline{4} \\
\Box =
\end{array}$$

**Ex 60:** Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{2}{6} \square > \frac{4}{6} \\ \square = \end{array}$$

**Ex 61:** Compare using >, <, =:

$$\begin{array}{c} & \square < \\ \frac{7}{5} & \square > & \frac{3}{5} \\ & \square = \end{array}$$

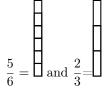
**Ex 62:** Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{3}{8} \square > \frac{6}{8} \\ \square = \end{array}$$

### E.3 COMPARING FRACTIONS WITH DIFFERENT DENOMINATORS

**Ex 63:** Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{3}{4} \square > \frac{1}{2} \\ \square = \end{array}$$


Hint: color the bars below to help you compare the fractions.

 $\frac{3}{4} = \square$  and  $\frac{1}{2} = \square$ 

**Ex 64:** Compare using >, <, =:

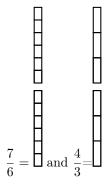
 $\begin{array}{c} \square < \\ \frac{5}{6} \square > \frac{2}{3} \\ \square = \end{array}$ 

Hint: color the bars below to help you compare the fractions.



**Ex 65:** Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{5}{6} \square > \frac{1}{2} \\ \square = \end{array}$$


Hint: color the bars below to help you compare the fractions.

$$\frac{5}{6} = 1$$
 and  $\frac{1}{2} = 1$ 

**Ex 66:** Compare using >, <, =:

 $\begin{array}{c} \square < \\ \frac{7}{6} \square > \frac{4}{3} \\ \square = \end{array}$ 

Hint: color the bars below to help you compare the fractions.



(°<u>+</u>°)

**Ex 67:** Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{3}{4} \square > \frac{7}{8} \\ \square = \end{array}$$

Hint: color the bars below to help you compare the fractions.

$$\frac{3}{4} = 1$$
 and  $\frac{7}{8} = 1$ 

#### E.4 COMPARING FRACTIONS TO REAL-WORLD PROBLEMS

MCQ 68: Hugo spends  $\frac{3}{8}$  of his money on Pokemon cards and  $\frac{1}{4}$  of his money to buy a tennis racket. On which does he spend more money?

 $\Box$  Pokemon cards

 $\Box$  Tennis racquet

Ex 78: **MCQ 69:** Sophie spends  $\frac{1}{2}$  of her money on clothes and  $\frac{3}{8}$  of her money on books. On which does she spend more money?

 $\Box$  Clothes

 $\Box$  Books

MCQ 70: For her cake recipe, Sarah uses  $\frac{2}{5}$  of a cup of butter and  $\frac{3}{10}$  of a cup of sugar. Which ingredient does she use more of?

 $\Box$  Butter

 $\Box$  Sugar

**MCQ 71:** In Class A,  $\frac{6}{10}$  of the students are girls, and in Class B,  $\frac{13}{20}$  of the students are girls. In which class is the proportion of girls higher?

 $\Box$  Class A

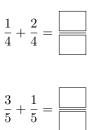
 $\Box$  Class B

|        | COMPARING | FRACTIONS                                                                                                                       | WITH | UNLIKE | Ex 82: |
|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------|------|--------|--------|
| Ex 72: |           |                                                                                                                                 |      |        |        |
|        |           | $\begin{array}{c} \square < \\ \frac{3}{4} \square > & \frac{5}{6} \\ \square = \end{array}$                                    |      |        | Ex 83: |
| Ex 73: |           |                                                                                                                                 |      |        |        |
|        |           | $\begin{array}{c} \frac{7}{8} \square < \\ \frac{7}{8} \square > \\ \square = \end{array} \begin{array}{c} 9 \\ 10 \end{array}$ |      |        | Ex 84: |
| Ex 74: |           |                                                                                                                                 |      |        | Ex 85: |





### F ADDITION AND SUBTRACTION WITH COMMON DENOMINATORS


#### WITH COMMON ADDING FRACTIONS **F.1** DENOMINATORS

Ex 76:

Ex 77:

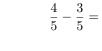
Ex 79:

Ex 80:










### F.2 SUBTRACTING FRACTIONS WITH COMMON DENOMINATORS

 $\frac{3}{4} - \frac{2}{4} =$ 

Ex 81:

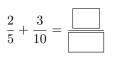
Ex 82:



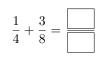
 $\frac{3}{4}$  –  $\frac{1}{4}$ 



 $\frac{7}{6} - \frac{2}{6} =$ 


Ex 85:

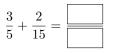



# G ADDITION AND SUBTRACTION WITH DIFFERENT DENOMINATORS

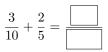
### G.1 ADDING FRACTIONS

#### Ex 86:




Ex 87:



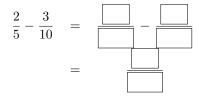

Ex 88:



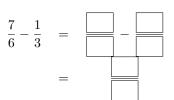
Ex 89:



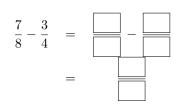
Ex 90:



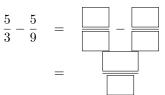

Ex 91:



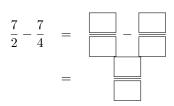

### G.2 SUBTRACTING FRACTIONS


Ex 92:




Ex 93:



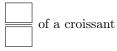

Ex 94:



Ex 95:



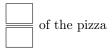
Ex 96:



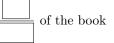

### G.3 SOLVING REAL-WORLD PROBLEMS

**Ex 97:** Louis has a whole cake. He cuts it into 8 equal slices and eats 3 slices. What fraction of the whole cake remains?




**Ex 98:** Today, Louis eats  $\frac{1}{2}$  of a croissant. Then, Louis eats  $\frac{1}{4}$  of another croissant. How much croissant did Louis eat in total?




**Ex 99:** At the beginning, there are  $\frac{5}{6}$  of a cake. After eating, there are  $\frac{2}{3}$  of the cake. What quantity of cake did Louis eat?



**Ex 100:** At the beginning, there are  $\frac{7}{8}$  of a pizza. After eating, there are  $\frac{3}{4}$  of the pizza. What quantity of pizza did Louis eat?



**Ex 101:** Louis read  $\frac{2}{5}$  of his book on Saturday and  $\frac{3}{10}$  of his book on Sunday. How much of his book did Louis read in total?



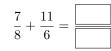
G.4 ADDING FRACTIONS WITH UNLIKE DENOMINATORS

 $\mathbf{Ex}\ \mathbf{102:}\ \mathbf{Calculate}\ \mathbf{and}\ \mathbf{simplify:}$ 



**Ex 103:** Calculate and simplify:

$$\frac{1}{2} + \frac{2}{3} =$$


**Ex 104:** Calculate and simplify:

$$\frac{3}{2} + \frac{4}{5} =$$

Ex 105: Calculate and simplify:

 $\frac{3}{4} + \frac{5}{6} =$ 

**Ex 106:** Calculate and simplify:




### H FRACTION AS QUOTIENT

### H.1 CONVERTING DIVISION TO FRACTIONS

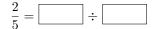
 $\mathbf{Ex}\ \mathbf{107:}\ \mathbf{Write}\ \mathbf{as}\ \mathbf{a}\ \mathbf{fraction:}$ 





 $2 \div 5 =$ 

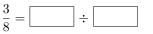
**Ex 109:** Write as a fraction:



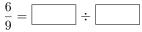

**Ex 110:** Write as a fraction:



## H.2 CONVERTING FRACTIONS TO DIVISION EXPRESSIONS


Ex 111: Convert the fraction into a division expression:




**Ex 112:** Convert the fraction into a division expression:



**Ex 113:** Convert the fraction into a division expression:



 $\mathbf{Ex}$  114: Convert the fraction into a division expression:



## H.3 CONVERTING FRACTIONS TO WHOLE NUMBERS

 $\mathbf{Ex}\ \mathbf{115:}\ \mathbf{Convert}\ \mathbf{the}\ \mathbf{fraction}\ \mathbf{into}\ \mathbf{a}\ \mathbf{whole}\ \mathbf{number:}$ 



**Ex 116:** Convert the fraction into a whole number:



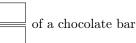
**Ex 117:** Convert the fraction into a whole number:



**Ex 118:** Convert the fraction into a whole number:



### H.4 FINDING FRACTIONS IN WORD PROBLEMS


**Ex 119:** Four friends share 3 cakes equally. What fraction does each friend get?



**Ex 120:** Five friends share 2 pizzas equally. What fraction does each friend get?



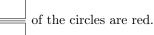
**Ex 121:** A couple shares 5 chocolate bars equally. What fraction of a chocolate bar does each person get?



fraction of a pie does each family member get?

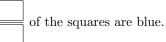
**Ex 122:** Six family members share 2 apple pies equally. What




### I FRACTION AS RATIO

I.1 IDENTIFYING FRACTIONS IN REAL-LIFE CONTEXTS

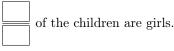
Ex 123:




What fraction of the circles are red?






What fraction of the squares are blue?



### Ex 125:



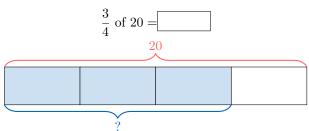
What fraction of the children are girls?



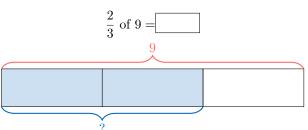
Ex 126:

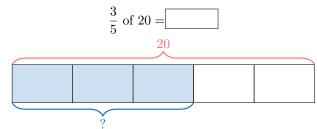




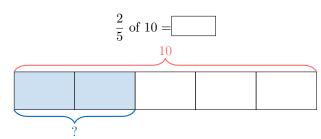

What fraction of the children raised their hand?



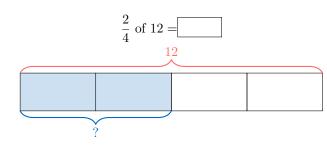

of the children raised their hand.


### **I.2 CALCULATING FRACTIONS OF A WHOLE**

### Ex 127:




### Ex 128:






Ex 130:



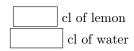
Ex 131:



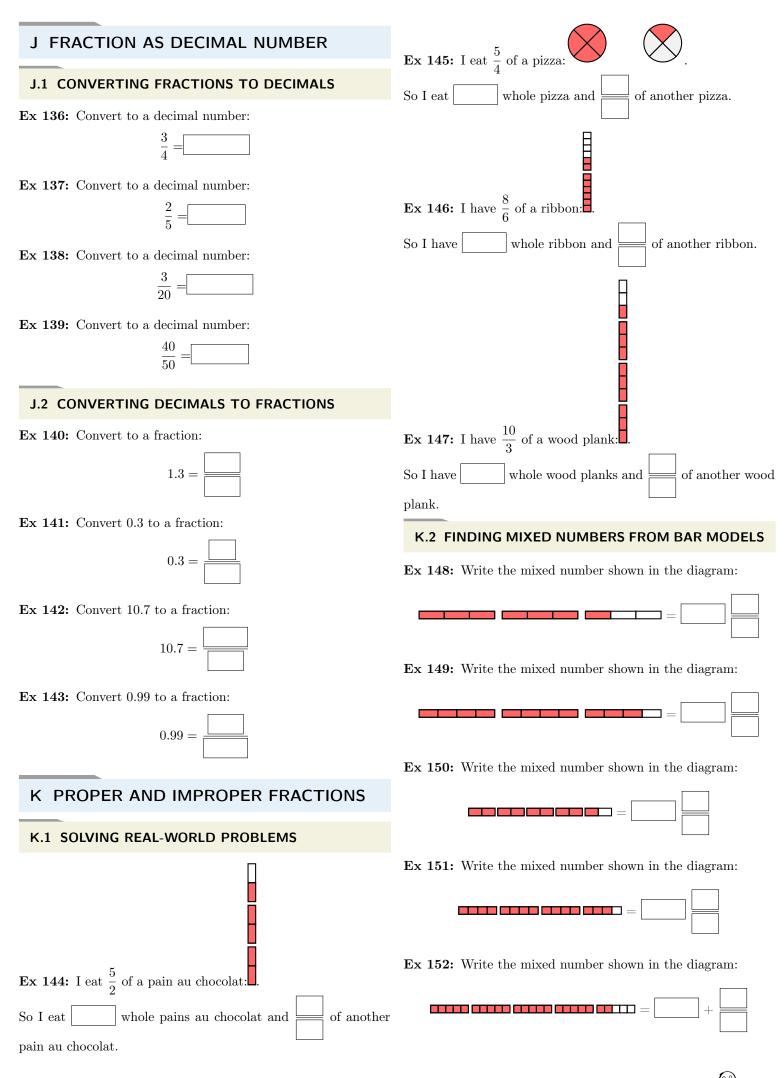
## I.3 APPLYING FRACTIONS TO REAL-WORLD PROBLEMS

**Ex 132:** In a class of 9 students,  $\frac{2}{3}$  of the students are girls. How many of the students are girls?

girls


**Ex 133:** In a group of 16 fruits,  $\frac{3}{4}$  of them are apples. How many of the fruits are apples?




**Ex 134:** In a collection of 15 books,  $\frac{2}{5}$  of them are novels. How many of the books are novels?



**Ex 135:** For a refreshing drink recipe, the mixture consists of  $\frac{1}{3}$  lemon and  $\frac{2}{3}$  water for a total of 18 cl. How much lemon and water are used in the drink?







#### K.3 FINDING FRACTIONS FROM MIXED NUMBERS

Ex 153: Convert into improper fraction:



Ex 154: Convert into an improper fraction:



Ex 155: Convert into an improper fraction:



Ex 156: Convert into an improper fraction:

$$4\frac{1}{2} = \boxed{}$$

### K.4 FINDING MIXED NUMBERS FROM FRACTIONS

Ex 157: Convert into mixed number:



Ex 158: Convert into a mixed number:



Ex 159: Convert into a mixed number:



Ex 160: Convert into a mixed number:



(\*<u>+</u>)