FRACTIONS

A DEFINITIONS

A.1 FINDING FRACTIONS

Ex 1: A bar represents 1. Find the fraction that represents the shaded part:

Ex 2: A bar represents 1. Find the fraction that represents the shaded part:

Ex 3: A bar represents 1. Find the fraction that represents the shaded part:

Ex 4: A circle represents 1. Find the fraction that represents the shaded part:

Ex 5: A circle represents 1. Find the fraction that represents the shaded part:

A.2 FINDING FRACTIONS IN WORD PROBLEMS

Ex 6: Hugo eats 3 parts of a cake that is divided into 4 equal parts. What fraction of the cake does Hugo eat?

Ex 7: Liam reads 5 chapters of a book that has 8 chapters. What fraction of the book does Liam read?

Ex 8: Vanessa paints 5 squares on a window that has 6 equal squares. What fraction of the window did she paint?

Ex 9: Sophia cuts her loaf of bread into 8 equal slices. She uses 2 slices to make sandwiches. What fraction of the bread did Sophia use to make the sandwiches?

A.3 WRITING FRACTIONS FROM WORDS

Ex 10: Write as fraction:

 $\mathbf{Ex}\ \mathbf{13:}\ \mathbf{Write}\ \mathrm{as}\ \mathrm{fraction:}$

six over hundred =

B ON THE NUMBER LINE

0

B.1 FINDING FRACTIONS WITH BAR FRACTION MODEL

Ex 14: Find the value of x

Ex 15: Find the value of x

Ex 16: Find the value of x

Ex 17: Find the value of x

0

Ex 18: Find the value of x

B.2 FINDING FRACTIONS

Ex 19: Find the value of x

Ex 20: Find the value of x

Ex 22: Find the value of x

B.3 FINDING FRACTIONS GREATER THAN 1

Ex 23: Find the value of x

Ex 24: Find the value of x

Ex 25: Find the value of x

Ex 26: Find the value of x

Ex 27: Find the value of x

C EQUIVALENT FRACTIONS

C.1 FINDING THE MISSING NUMERATOR

Ex 29:

 $\frac{2}{4} = \frac{2}{2}$

 $\frac{9}{6} = \frac{2}{2}$

Ex 30:

Ex 31:

Ex 32:

Ex 33:

 $\frac{4}{10} = \frac{5}{5}$

C.2 FINDING THE MISSING DENOMINATOR

Ex 34:

4		2	
10	=		

 $\frac{6}{12} = \frac{1}{12}$

Ex 35:

Ex 36:

Ex 37:

 $\frac{12}{10} = \frac{6}{10}$

D SIMPLIFICATION

D.1 SIMPLIFYING FRACTIONS

Ex 38: Simplify:

Ex 39: Simplify:

Ex 40: Simplify:

Ex 41: Simplify:

E ORDERING FRACTIONS

E.1 COMPARING WITH SAME DENOMINATOR WITH BAR MODELS

Ex 42: Compare using >, <, =:

Ex 43: Compare using >, <, =:

Ex 44: Compare using >, <, =:

Ex 45: Compare using >, <, =:

Ex 46: Compare using >, <, =:

E.2 COMPARING WITH SAME DENOMINATOR

Ex 47: Compare using >, <, =:

 $\begin{array}{c} \square < \\ \frac{7}{3} \square > \frac{6}{3} \\ \square = \end{array}$

Ex 48: Compare using >, <, =:

$$\begin{array}{c}
\Box < \\
\frac{5}{4} \quad \Box > \\
\Box =
\end{array}$$

Ex 49: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{2}{6} \quad \square > \quad \frac{4}{6} \\ \square = \end{array}$$

Ex 50: Compare using >, <, =:

 $\begin{array}{c} \square < \\ \frac{7}{5} \square > \frac{3}{5} \\ \square = \end{array}$

Ex 51: Compare using >, <, =:

 $\begin{array}{c} \square < \\ \frac{3}{8} \square > \frac{6}{8} \\ \square = \end{array}$

(°±°)

E.3 COMPARING FRACTIONS WITH DIFFERENT DENOMINATORS

Ex 52: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{3}{4} \square > \frac{1}{2} \\ \square = \end{array}$$

Hint: color the bars below to help you compare the fractions.

$$\frac{3}{4} = \Box$$
 and $\frac{1}{2} = \Box$

Ex 53: Compare using >, <, =:

$$\begin{array}{c}
\Box < \\
5 \\
\hline
6 \\
\Box > \\
\hline
3
\end{array}$$

Hint: color the bars below to help you compare the fractions.

Ex 54: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{5}{6} \square > \frac{1}{2} \\ \square = \end{array}$$

Hint: color the bars below to help you compare the fractions.

Ex 55: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{7}{6} \square > \frac{4}{3} \\ \square = \end{array}$$

Hint: color the bars below to help you compare the fractions.

Ex 56: Compare using >, <, =:

Hint: color the bars below to help you compare the fractions.

E.4 COMPARING FRACTIONS TO REAL-WORLD PROBLEMS

MCQ 57: Hugo spends $\frac{3}{8}$ of his money on Pokemon cards and $\frac{1}{4}$ of his money to buy a tennis racket. On which does he spend more money?

- \Box Pokemon cards
- \Box Tennis racquet

MCQ 58: Sophie spends $\frac{1}{2}$ of her money on clothes and $\frac{3}{8}$ of her money on books. On which does she spend more money?

- \Box Clothes
- \Box Books

MCQ 59: For her cake recipe, Sarah uses $\frac{2}{5}$ of a cup of butter and $\frac{3}{10}$ of a cup of sugar. Which ingredient does she use more of?

- \Box Butter
- \Box Sugar

MCQ 60: In Class A, $\frac{6}{10}$ of the students are girls, and in Class B, $\frac{13}{20}$ of the students are girls. In which class is the proportion of girls higher?

 \Box Class A

 \Box Class B

F ADDITION AND SUBTRACTION WITH COMMON DENOMINATORS

F.1 ADDING FRACTIONS WITH COMMON DENOMINATORS

Ex 61:

Ex 62:

Ex 64:

Ex 65:

F.2	ADDING	FRACTIONS	WITH	COMMON	
DENOMINATORS					

Ex 66:

Ex 67:

Ex 68:

Ex 69:

Ex 70:

F.3 SUBTRACTING FRACTIONS WITH COMMON DENOMINATORS

Ex 71:

Ex 72:

Ex 73:

Ex 74:

Ex 75:

F.4 SUBTRACTING FRACTIONS WITH COMMON DENOMINATORS

Ex 76:

Ex 77:

Ex 78:

Ex 79:

Ex 80:

$$\frac{7}{6} - \frac{2}{6} =$$

G ADDITION AND SUBTRACTION WITH DIFFERENT DENOMINATORS

G.1 FINDING A COMMON DENOMINATOR

$$\frac{1}{2} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4}$$

Ex 82:

$$\frac{2}{3} + \frac{5}{6} = \frac{2}{6} + \frac{5}{6}$$

Ex 83:

Ex 84:

Ex 85:

G.2 ADDING FRACTIONS STEP BY STEP

Ex 86:

Ex 87:

Ex 89:

$$\frac{3}{10} + \frac{2}{5} = \frac{10}{10} + \frac{10}{10} = \frac{10}{10}$$

Ex 90:

G.3 ADDING FRACTIONS

Ex 91:

Ex 92:

 $\frac{3}{4} + \frac{1}{8} = \boxed{1} + \boxed{1}$

Ex 93:

Ex 94:

Ex 88:

G.4 ADDING FRACTIONS

Ex 96:

Ex 97:

Ex 98:

Ex 99:

Ex 100:

Ex 101:

G.5 SUBTRACTING FRACTIONS

Ex 102:

Ex 103:

Ex 104:

Ex 106:

G.6 SOLVING REAL-WORLD PROBLEMS

Ex 107: Louis has a whole cake. He cuts it into 8 equal slices and eats 3 slices. What fraction of the whole cake remains?

Ex 108: Today, Louis eats $\frac{1}{2}$ of a croissant. Then, Louis eats $\frac{1}{4}$ of another croissant. How much croissant did Louis eat in total?

Ex 109: At the beginning, there are $\frac{5}{6}$ of a cake. After eating, there are $\frac{2}{3}$ of the cake. What quantity of cake did Louis eat?

Ex 110: At the beginning, there are $\frac{7}{8}$ of a pizza. After eating, there are $\frac{3}{4}$ of the pizza. What quantity of pizza did Louis eat?

Ex 111: Louis read $\frac{2}{5}$ of his book on Saturday and $\frac{3}{10}$ of his book on Sunday. How much of his book did Louis read in total?

Ex 105:

