A DEFINITIONS

A.1 FINDING FRACTIONS

 $\mathbf{E}\mathbf{x}$ 1: A bar represents 1. Find the fraction that represents the shaded part:

Ex 2: A bar represents 1. Find the fraction that represents the shaded part:

 \mathbf{Ex} 3: A bar represents 1. Find the fraction that represents the shaded part:

 $\mathbf{Ex}\ \mathbf{4:}\ \mathbf{A}$ circle represents 1. Find the fraction that represents the shaded part:

Ex 5: A circle represents 1. Find the fraction that represents the shaded part:

A.2 WRITING FRACTIONS FROM WORDS

Ex 6: Write as fraction:

Ex 7: Write as fraction:

Ex 8: Write as fraction:

Ex 9: Write as fraction:

B ON THE NUMBER LINE

B.1 FINDING FRACTIONS WITH BAR FRACTION MODEL

Ex 10: Find the value of x

Ex 11: Find the value of x

Ex 12: Find the value of x

Ex 13: Find the value of x

Ex 14: Find the value of x

B.2 FINDING FRACTIONS

Ex 15: Find the value of x

Ex 16: Find the value of x

Ex 17: Find the value of x

Ex 18: Find the value of x

B.3 FINDING FRACTIONS GREATER THAN 1

Ex 19: Find the value of x

Ex 20: Find the value of x

Ex 21: Find the value of x

Ex 22: Find the value of x

Ex 23: Find the value of x

Ex 24: Find the value of x

C EQUIVALENT FRACTIONS

C.1 FINDING THE MISSING NUMERATOR

Ex 25:

$$\frac{2}{4} = \boxed{\frac{2}{2}}$$

Ex 26:

$$\frac{9}{6} = \frac{2}{2}$$

Ex 27:

$$\frac{5}{10} = \boxed{\frac{2}{2}}$$

Ex 28:

$$\frac{16}{12} = \frac{}{3}$$

Ex 29:

$$\frac{4}{10} = \frac{\boxed{}}{5}$$

C.2 FINDING THE MISSING NUMERATOR

Ex 30:

$$\frac{1}{2} = \boxed{\frac{1}{4}}$$

Ex 31:

$$\frac{4}{3} = \frac{15}{15}$$

Ex 32:

$$\frac{3}{4} = \boxed{\frac{1}{12}}$$

Ex 33:

$$\frac{5}{6} = \boxed{\frac{12}{12}}$$

Ex 34:

$$\frac{7}{8} = \frac{}{32}$$

C.3 FINDING THE MISSING DENOMINATOR

Ex 35:

$$\frac{4}{10} = \frac{2}{10}$$

Ex 36:

$$\frac{6}{12} = \boxed{ }$$

Ex 37:

$$\frac{9}{6} = \frac{3}{6}$$

Ex 38:

$$\frac{12}{10} = \frac{6}{10}$$

C.4 FINDING THE MISSING DENOMINATOR

Ex 39:

$$\frac{2}{5} = \frac{6}{1}$$

Ex 40:

$$\frac{2}{3} = \frac{8}{3}$$

Ex 41:

$$\frac{3}{5} = \frac{9}{1}$$

Ex 42:

$$\frac{4}{7} = \frac{12}{1}$$

Ex 43:

$$\frac{5}{9} = \frac{20}{}$$

D SIMPLIFICATION

D.1 SIMPLIFYING FRACTIONS

Ex 44: Simplify:

$$\frac{4}{6} = \boxed{}$$

Ex 45: Simplify:

$$\frac{2}{4} = \boxed{\boxed{}}$$

Ex 46: Simplify:

$$\frac{10}{8} = \frac{10}{100}$$

Ex 47: Simplify:

$$\frac{6}{9} =$$

D.2 SIMPLIFYING FRACTIONS

Ex 48: Simplify:

$$\frac{24}{16} = \boxed{}$$

Ex 49: Simplify:

$$\frac{12}{20} = \boxed{}$$

Ex 50: Simplify:

$$\frac{30}{100} = \boxed{}$$

Ex 51: Simplify:

$$\frac{25}{100} = \boxed{}$$

E CROSS MULTIPLICATION

E.1 SOLVING PROPORTIONS USING CROSS-MULTIPLICATION

Ex 52: Solve x for $\frac{12}{4} = \frac{x}{6}$:

$$x =$$

Ex 53: Solve x for $\frac{11}{10} = \frac{x}{5}$:

$$x = \boxed{}$$

Ex 54: Solve x for $\frac{12}{10} = \frac{18}{x}$:

$$x =$$

Ex 55: Solve x for $\frac{27}{x} = \frac{30}{10}$:

F ORDERING FRACTIONS

F.1 COMPARING WITH SAME DENOMINATOR WITH BAR MODELS

Ex 56: Compare using >, <, =:

Ex 57: Compare using >, <, =:

Ex 58: Compare using >, <, =:

Ex 59: Compare using >, <, =:

Ex 60: Compare using >, <, =:

F.2 COMPARING WITH SAME DENOMINATOR

Ex 61: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{7}{3} \square > \frac{6}{3} \\ \square = \end{array}$$

Ex 62: Compare using >, <, =:

$$\begin{array}{ccc}
 & \square < \\
 & 5 \\
\hline
4 & \square > \frac{3}{4}
\end{array}$$

Ex 63: Compare using >, <, =:

$$\begin{array}{ccc}
\square < & \\
\frac{2}{6} & \square > \frac{4}{6}
\end{array}$$

Ex 64: Compare using >, <, =:

$$\begin{array}{c}
\square < \\
\frac{7}{5} \square > \frac{3}{5} \\
\square =
\end{array}$$

Ex 65: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{3}{8} \square > \frac{6}{8} \\ \square = \end{array}$$

F.3 COMPARING FRACTIONS WITH DIFFERENT DENOMINATORS

Ex 66: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{3}{4} \square > \frac{1}{2} \end{array}$$

Hint: color the bars below to help you compare the fractions.

Ex 67: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{5}{6} \square > \frac{2}{3} \end{array}$$

Hint: color the bars below to help you compare the fractions.

Ex 68: Compare using >, <, =:

$$\begin{array}{c}
\square < \\
\frac{5}{6} \square > \frac{1}{2}
\end{array}$$

Hint: color the bars below to help you compare the fractions.

Ex 69: Compare using >, <, =:

$$\begin{array}{ccc}
 & \square < \\
 & 7 & \square > \frac{4}{3} \\
 & \square =
\end{array}$$

Hint: color the bars below to help you compare the fractions.

Ex 70: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{3}{4} \square > \frac{7}{8} \\ \square = \end{array}$$

Hint: color the bars below to help you compare the fractions.

F.4 COMPARING FRACTIONS TO REAL-WORLD PROBLEMS

MCQ 71: Hugo spends $\frac{3}{8}$ of his money on Pokemon cards and $\frac{1}{4}$ of his money to buy a tennis racket. On which does he spend more money?

- □ Pokemon cards
- ☐ Tennis racquet

MCQ 72: Sophie spends $\frac{1}{2}$ of her money on clothes and $\frac{3}{8}$ of her money on books. On which does she spend more money?

- □ Clothes
- □ Books

MCQ 73: For her cake recipe, Sarah uses $\frac{2}{5}$ of a cup of butter and $\frac{3}{10}$ of a cup of sugar. Which ingredient does she use more of?

- ☐ Butter
- □ Sugar

MCQ 74: In Class A, $\frac{6}{10}$ of the students are girls, and in Class B, $\frac{13}{20}$ of the students are girls. In which class is the proportion of girls higher?

- □ Class A
- □ Class B

F.5 COMPARING FRACTIONS WITH UNLIKE DENOMINATORS

Ex 75:

$$\begin{array}{c} \square < \\ \frac{3}{4} \square > \\ \boxed{5} \\ \boxed{=} \end{array}$$

Ex 76:

Ex 77:

$$\begin{array}{c} \square < \\ \frac{4}{5} \square > \\ \square = \end{array}$$

Ex 78:

$$\begin{array}{ccc}
\square < & \\
\frac{2}{3}\square > & \frac{3}{4}
\end{array}$$

G ADDITION AND SUBTRACTION WITH COMMON DENOMINATORS

G.1 ADDING FRACTIONS WITH COMMON DENOMINATORS

Ex 79:

$$\frac{1}{4} + \frac{2}{4} =$$

Ex 80:

$$\frac{3}{5} + \frac{1}{5} = \boxed{}$$

Ex 81:

$$\frac{2}{6} + \frac{3}{6} =$$

Ex 82:

$$\frac{2}{3} + \frac{2}{3} = \boxed{\boxed{}}$$

Ex 83:

$$\frac{4}{5} + \frac{2}{5} = \boxed{\boxed{}}$$

G.2 SUBTRACTING FRACTIONS WITH COMMON DENOMINATORS

Ex 84:

$$\frac{3}{4} - \frac{2}{4} = \boxed{}$$

Ex 85:

$$\frac{4}{5} - \frac{3}{5} = \boxed{\boxed{}}$$

Ex 86:

$$\frac{3}{4} - \frac{1}{4} = \boxed{\boxed{}}$$

Ex 87:

$$\frac{4}{3} - \frac{2}{3} = \boxed{\boxed{}}$$

Ex 88:

$$\frac{7}{6} - \frac{2}{6} = \boxed{\boxed{}}$$

H ADDITION AND SUBTRACTION WITH DIFFERENT DENOMINATORS

H.1 ADDING FRACTIONS

Ex 89:

$$\frac{2}{5} + \frac{3}{10} = \boxed{}$$

Ex 90:

$$\frac{1}{4} + \frac{3}{8} = \boxed{\boxed{}}$$

Ex 91:

$$\frac{2}{3} + \frac{1}{6} = \boxed{}$$

Ex 92:

$$\frac{3}{5} + \frac{2}{15} =$$

Ex 93:

$$\frac{3}{10} + \frac{2}{5} = \frac{}{}$$

Ex 94:

$$\frac{3}{8} + \frac{1}{2} = \boxed{\boxed{}}$$

H.2 SUBTRACTING FRACTIONS

Ex 95:

$$\frac{2}{5} - \frac{3}{10} = \boxed{}$$

Ex 96:

$$\frac{7}{6} - \frac{1}{3} = \boxed{\boxed{}}$$

Ex 97:

$$\frac{7}{8} - \frac{3}{4} =$$

Ex 98:

$$\frac{5}{3} - \frac{5}{9} = \boxed{\boxed{}}$$

Ex 99:

$$\frac{7}{2} - \frac{7}{4} = \boxed{}$$

H.3 SOLVING REAL-WORLD PROBLEMS

Ex 100: Louis has a whole cake. He cuts it into 8 equal slices and eats 3 slices. What fraction of the whole cake remains?

Ex 101: Today, Louis eats $\frac{1}{2}$ of a croissant. Then, Louis eats $\frac{1}{4}$ of another croissant. How much croissant did Louis eat in total?

Ex 102: At the beginning, there are $\frac{5}{6}$ of a cake. After eating, there are $\frac{2}{3}$ of the cake. What quantity of cake did Louis eat?

Ex 103: At the beginning, there are $\frac{7}{8}$ of a pizza. After eating, there are $\frac{3}{4}$ of the pizza. What quantity of pizza did Louis eat?

Ex 104: Louis read $\frac{2}{5}$ of his book on Saturday and $\frac{3}{10}$ of his book on Sunday. How much of his book did Louis read in total?

H.4 ADDING FRACTIONS WITH UNLIKE DENOMINATORS

Ex 105: Calculate and simplify:

$$\frac{2}{3} + \frac{3}{5} = \boxed{}$$

Ex 106: Calculate and simplify:

$$\frac{1}{2} + \frac{2}{3} = \boxed{}$$

Ex 107: Calculate and simplify:

$$\frac{3}{2} + \frac{4}{5} =$$

Ex 108: Calculate and simplify:

$$\frac{3}{4} + \frac{5}{6} = \boxed{}$$

Ex 109: Calculate and simplify:

$$\frac{7}{8} + \frac{11}{6} =$$

I FRACTION AS QUOTIENT

I.1 CONVERTING DIVISION TO FRACTIONS

Ex 110: Write as a fraction:

$$3 \div 2 =$$

Ex 111: Write as a fraction:

$$2 \div 5 =$$

Ex 112: Write as a fraction:

$$3 \div 4 = \boxed{}$$

Ex 113: Write as a fraction:

$$5 \div 3 =$$

I.2 CONVERTING FRACTIONS TO DIVISION EXPRESSIONS

Ex 114: Convert the fraction into a division expression:

$$\frac{2}{5} = \boxed{} \div \boxed{}$$

Ex 115: Convert the fraction into a division expression:

$$\frac{4}{7} = \boxed{} \div \boxed{}$$

Ex 116: Convert the fraction into a division expression:

$$\frac{3}{8} = \boxed{} \div \boxed{}$$

Ex 117: Convert the fraction into a division expression:

$$\frac{6}{9} = \boxed{} \div \boxed{}$$

1.3 CONVERTING FRACTIONS TO WHOLE NUMBERS

Ex 118: Convert the fraction into a whole number:

$$\frac{4}{2} = \boxed{}$$

Ex 119: Convert the fraction into a whole number:

$$\frac{9}{3} = \boxed{}$$

Ex 120: Convert the fraction into a whole number:

$$\frac{8}{4} =$$

Ex 121: Convert the fraction into a whole number:

$$\frac{5}{5} = \boxed{}$$

I.4 FINDING FRACTIONS IN WORD PROBLEMS

Ex 122: Four friends share 3 cakes equally. What fraction does each friend get?

of a cake

Ex 123: Five friends share 2 pizzas equally. What fraction does each friend get?

 \mathbf{Ex} 124: A couple shares 5 chocolate bars equally. What fraction of a chocolate bar does each person get?

Ex 125: Six family members share 2 apple pies equally. What fraction of a pie does each family member get?

J FRACTION AS RATIO

J.1 IDENTIFYING FRACTIONS IN REAL-LIFE CONTEXTS

Ex 126:

What fraction of the circles are red? (Simplify your answer.)

Ex 127:

What fraction of the squares are blue? (Simplify your answer.)

Ex 128:

What fraction of the children are girls? (Simplify your answer.)

Ex 129:

What fraction of the children raised their hand? (Simplify your answer.)

J.2 CALCULATING FRACTIONS OF A WHOLE

Ex 130:

Ex 131:

Ex 132:

Ex 133:

Ex 134:

J.3 APPLYING FRACTIONS TO REAL-WORLD PROBLEMS

Ex 135: In a class of 9 students, $\frac{2}{3}$ of the students are girls. How many of the students are girls?

girls

Ex 136: In a group of 16 fruits, $\frac{3}{4}$ of them are apples. How many of the fruits are apples?

apples

Ex 137: In a collection of 15 books, $\frac{2}{5}$ of them are novels. How many of the books are novels?

novels

Ex 138: For a refreshing drink recipe, the mixture consists of $\frac{1}{3}$ lemon and $\frac{2}{3}$ water for a total of 18 cl. How much lemon and water are used in the drink?

cl of lemon

K FRACTION AS DECIMAL NUMBER

K.1 CONVERTING FRACTIONS TO DECIMALS

Ex 139: Convert to a decimal number:

 $\frac{3}{4} = \boxed{}$

Ex 140: Convert to a decimal number:

 $\frac{2}{5} =$

Ex 141: Convert to a decimal number:

 $\frac{3}{20} = \boxed{}$

Ex 142: Convert to a decimal number:

 $\frac{40}{50} =$

K.2 CONVERTING DECIMALS TO FRACTIONS

Ex 143: Convert to a fraction:

Ex 144: Convert 0.3 to a fraction:

Ex 145: Convert 10.7 to a fraction:

Ex 146: Convert 0.99 to a fraction:

L PROPER AND IMPROPER FRACTIONS

L.1 SOLVING REAL-WORLD PROBLEMS

Ex 147: I eat $\frac{5}{2}$ of a pain au chocolat: ... So I eat _____ whole pains au chocolat and _____ of another pain

Ex 148: I eat $\frac{5}{4}$ of a pizza:

So I eat _____ whole pizza and ____ of another pizza.

Ex 149: I have $\frac{11}{6}$ of a ribbon:

au chocolat.

So I have whole ribbon and of another ribbon.

L.4 FINDING MIXED NUMBERS FROM FRACTIONS

Ex 160: Convert into mixed number:

$$\frac{3}{2} = \boxed{}$$

Ex 161: Convert into a mixed number:

$$\frac{7}{3} = \boxed{}$$

Ex 162: Convert into a mixed number:

$$\frac{9}{2} = \boxed{}$$

Ex 163: Convert into a mixed number:

$$\frac{13}{5} = \boxed{}$$

Ex 150: I have $\frac{10}{3}$ of a wood plank:

So I have _____ whole wood planks and plank.

L.2 FINDING MIXED NUMBERS FROM BAR MODELS

of another wood

Ex 151: Write the mixed number shown in the diagram:

Ex 152: Write the mixed number shown in the diagram:

Ex 153: Write the mixed number shown in the diagram:

Ex 154: Write the mixed number shown in the diagram:

Ex 155: Write the mixed number shown in the diagram:

L.3 FINDING FRACTIONS FROM MIXED NUMBERS

Ex 156: Convert into improper fraction:

$$2\frac{1}{3} =$$

Ex 157: Convert into an improper fraction:

$$3\frac{2}{5} = \boxed{\boxed{}}$$

Ex 158: Convert into an improper fraction:

$$2\frac{3}{4} = \boxed{\boxed{}}$$

Ex 159: Convert into an improper fraction:

$$4\frac{1}{2} = \frac{1}{1}$$