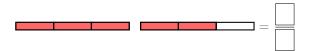
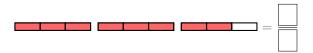
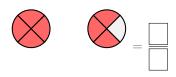
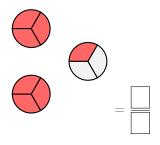

FRACTIONS


A DEFINITIONS

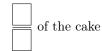
A.1 FINDING FRACTIONS


Ex 1: A bar represents 1. Find the fraction that represents the shaded part:

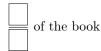

 \mathbf{Ex} 2: A bar represents 1. Find the fraction that represents the shaded part:


Ex 3: A bar represents 1. Find the fraction that represents the shaded part:

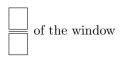
 \mathbf{Ex} 4: A circle represents 1. Find the fraction that represents the shaded part:

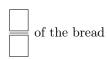


Ex 5: A circle represents 1. Find the fraction that represents the shaded part:

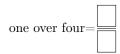


A.2 FINDING FRACTIONS IN WORD PROBLEMS

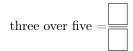

Ex 6: Hugo eats 3 parts of a cake that is divided into 4 equal parts. What fraction of the cake does Hugo eat?


Ex 7: Liam reads 5 chapters of a book that has 8 chapters. What fraction of the book does Liam read?

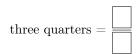
Ex 8: Vanessa paints 5 squares on a window that has 6 equal squares. What fraction of the window did she paint?



Ex 9: Sophia cuts her loaf of bread into 8 equal slices. She uses 2 slices to make sandwiches. What fraction of the bread did Sophia use to make the sandwiches?

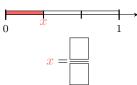


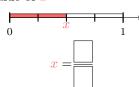
A.3 WRITING FRACTIONS FROM WORDS


Ex 10: Write as fraction:

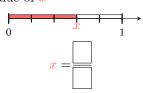
Ex 11: Write as fraction:

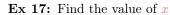
Ex 12: Write as fraction:

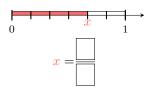

Ex 13: Write as fraction:

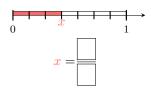

B ON THE NUMBER LINE

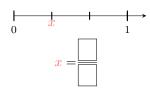
B.1 FINDING FRACTIONS WITH BAR FRACTION MODEL


Ex 14: Find the value of x

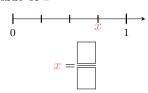



Ex 15: Find the value of x

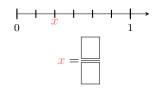

Ex 16: Find the value of x

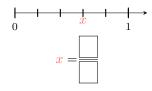


Ex 18: Find the value of x

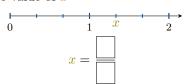


B.2 FINDING FRACTIONS

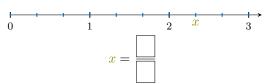

Ex 19: Find the value of x


Ex 20: Find the value of x

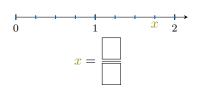
Ex 21: Find the value of x

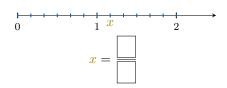


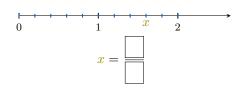
Ex 22: Find the value of x

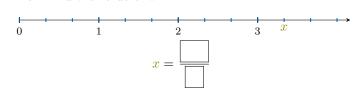


B.3 FINDING FRACTIONS GREATER THAN 1


Ex 23: Find the value of x


Ex 24: Find the value of x


Ex 25: Find the value of x


Ex 26: Find the value of x

Ex 27: Find the value of x

Ex 28: Find the value of x

C EQUIVALENT FRACTIONS

C.1 FINDING THE MISSING NUMERATOR

Ex 29:

$$\frac{2}{4} = \boxed{\frac{2}{2}}$$

Ex 30:

$$\frac{9}{6} = \frac{2}{2}$$

Ex 31:

$$\frac{5}{10} = \boxed{\frac{2}{2}}$$

Ex 32:

$$\frac{16}{12} = \frac{}{3}$$

Ex 33:

$$\frac{4}{10} = \frac{1}{5}$$

C.2 FINDING THE MISSING DENOMINATOR

Ex 34:

$$\frac{4}{10} = \frac{2}{10}$$

Ex 35:

$$\frac{6}{12} = \frac{1}{1}$$

Ex 36:

$$\frac{9}{6} = \frac{3}{6}$$

Ex 37:

$$\frac{12}{10} = \frac{6}{10}$$

D SIMPLIFICATION

D.1 SIMPLIFYING FRACTIONS

Ex 38: Simplify:

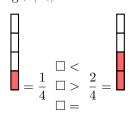
$$\frac{4}{6} = \boxed{}$$

Ex 39: Simplify:

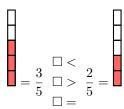
$$\frac{2}{4} = \boxed{}$$

Ex 40: Simplify:

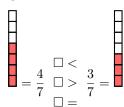
$$\frac{10}{8} = \boxed{}$$

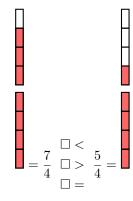

Ex 41: Simplify:

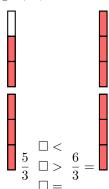
$$\frac{6}{9} = \boxed{}$$


E ORDERING FRACTIONS

E.1 COMPARING WITH SAME DENOMINATOR WITH BAR MODELS


Ex 42: Compare using >, <, =:


Ex 43: Compare using >, <, =:


Ex 44: Compare using >, <, =:

Ex 45: Compare using >, <, =:

Ex 46: Compare using >, <, =:

E.2 COMPARING WITH SAME DENOMINATOR

Ex 47: Compare using >, <, =:

$$\begin{array}{ccc}
 & \square & < \\
 & 7 & \square & > 6 \\
\hline
 & 3 & \square & \end{array}$$

Ex 48: Compare using >, <, =:

$$\begin{array}{c}
\square < \\
\frac{5}{4} \square > \frac{3}{4} \\
\square =
\end{array}$$

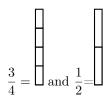
Ex 49: Compare using >, <, =:

$$\frac{2}{6} \square > \frac{2}{6}$$

Ex 50: Compare using >, <, =:

$$\begin{array}{ccc}
 & \square < \\
 & 7 \\
\hline
5 & \square > \frac{3}{5}
\end{array}$$

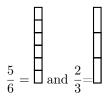
Ex 51: Compare using >, <, =:


$$\begin{array}{c} \square < \\ \frac{3}{8} \square > \frac{6}{8} \\ \square = \end{array}$$

E.3 COMPARING FRACTIONS WITH DIFFERENT DENOMINATORS

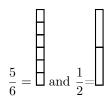
Ex 52: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{3}{4} \square > \frac{1}{2} \\ \square = \end{array}$$


Hint: color the bars below to help you compare the fractions.

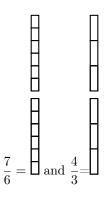
Ex 53: Compare using >, <, =:

$$\begin{array}{c}
\square < \\
\frac{5}{6} \square > \frac{2}{3} \\
\square =
\end{array}$$


Hint: color the bars below to help you compare the fractions.

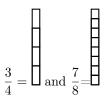
Ex 54: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{5}{6} \square > \frac{1}{2} \\ \square = \end{array}$$


Hint: color the bars below to help you compare the fractions.

Ex 55: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{7}{6} \square > \frac{4}{3} \\ \square = \end{array}$$


Hint: color the bars below to help you compare the fractions.

Ex 56: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{3}{4} \square > \frac{7}{8} \end{array}$$

Hint: color the bars below to help you compare the fractions.

E.4 COMPARING FRACTIONS TO REAL-WORLD PROBLEMS

MCQ 57: Hugo spends $\frac{3}{8}$ of his money on Pokemon cards and $\frac{1}{4}$ of his money to buy a tennis racket. On which does he spend more money?

- ☐ Pokemon cards
- ☐ Tennis racquet

MCQ 58: Sophie spends $\frac{1}{2}$ of her money on clothes and $\frac{3}{8}$ of her money on books. On which does she spend more money?

- □ Clothes
- □ Books

MCQ 59: For her cake recipe, Sarah uses $\frac{2}{5}$ of a cup of butter and $\frac{3}{10}$ of a cup of sugar. Which ingredient does she use more of?

- □ Butter
- \square Sugar

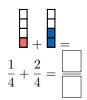
MCQ 60: In Class A, $\frac{6}{10}$ of the students are girls, and in Class B, $\frac{13}{20}$ of the students are girls. In which class is the proportion of girls higher?

- □ Class A
- □ Class B

F ADDITION AND SUBTRACTION WITH COMMON DENOMINATORS

$\frac{2}{6} + \frac{3}{6} = \boxed{\boxed{}}$

F.1 ADDING FRACTIONS WITH DENOMINATORS


Ex 69:

COMMON

Ex 68:

Ex 61:

Ex 70:

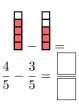
$$\frac{4}{5} + \frac{2}{5} = \boxed{}$$

F.3 SUBTRACTING FRACTIONS WITH COMMON

Ex 62:

$$\frac{3}{5} + \frac{1}{5} = \frac{1}{5}$$

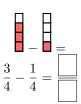
Ex 71:


DENOMINATORS

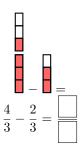
$$\begin{bmatrix} -2 \\ -4 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}$$

Ex 63:

$$\frac{2}{6} + \frac{3}{6} =$$

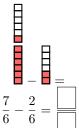

Ex 72:

Ex 64:


Ex 73:

Ex 65:

Ex 74:



F.2 ADDING FRACTIONS WITH COMMON DENOMINATORS

Ex 66:

$$\frac{1}{4} + \frac{2}{4} = \boxed{}$$

Ex 75:

Ex 67:

$$\frac{3}{5} + \frac{1}{5} =$$

F.4 SUBTRACTING FRACTIONS WITH COMMON DENOMINATORS

Ex 76:

$$\frac{3}{4} - \frac{2}{4} = \boxed{\boxed{}}$$

Ex 77:

$$\frac{4}{5} - \frac{3}{5} =$$

Ex 78:

$$\frac{3}{4} - \frac{1}{4} = \boxed{}$$

Ex 79:

$$\frac{4}{3} - \frac{2}{3} = \boxed{}$$

Ex 80:

$$\frac{7}{6} - \frac{2}{6} = \boxed{\boxed{}}$$

G ADDITION AND SUBTRACTION WITH DIFFERENT DENOMINATORS

G.1 FINDING A COMMON DENOMINATOR

Ex 81:

$$\frac{1}{2} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4}$$

Ex 82:

$$\frac{2}{3} + \frac{5}{6} = \frac{2}{6} + \frac{5}{6}$$

Ex 83:

$$\frac{3}{8} + \frac{1}{2} = \frac{3}{8} + \frac{2}{8}$$

Ex 84:

$$\frac{5}{6} + \frac{3}{2} = \frac{5}{6} + \frac{\boxed{}}{6}$$

Ex 85:

$$\frac{3}{10} + \frac{6}{5} = \frac{3}{10} + \boxed{\boxed{10}}$$

G.2 ADDING FRACTIONS STEP BY STEP

Ex 86:

$$\frac{1}{2} + \frac{1}{4} = \frac{\boxed{4} + \boxed{4}}{4}$$
$$= \frac{\boxed{4} + \boxed{4}}{4}$$

Ex 87:

$$\frac{1}{3} + \frac{5}{6} = \frac{}{6} + \frac{}{6}$$

$$= \frac{}{6}$$

Ex 88:

$$\frac{1}{2} + \frac{2}{6} = \frac{\boxed{} + \boxed{}}{6}$$

$$= \frac{\boxed{}}{6}$$

Ex 89:

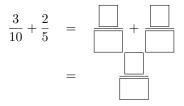
$$\frac{3}{10} + \frac{2}{5} = \frac{10}{10} + \frac{10}{10}$$

$$= \frac{10}{10}$$

Ex 90:

$$\frac{3}{8} + \frac{1}{2} = \frac{8}{8} + \frac{8}{8}$$

$$= \frac{8}{8}$$


G.3 ADDING FRACTIONS

Ex 91:

Ex 92:

Ex 93:

Ex 94:

Ex 95:

G.4 ADDING FRACTIONS

Ex 96:

$$\frac{2}{5} + \frac{3}{10} = \frac{\Box}{\Box}$$

Ex 97:

$$\frac{1}{4} + \frac{3}{8} = \boxed{\boxed{}}$$

Ex 98:

$$\frac{2}{3} + \frac{1}{6} = \boxed{}$$

Ex 99:

$$\frac{3}{5} + \frac{2}{15} =$$

Ex 100:

$$\frac{3}{10} + \frac{2}{5} = \boxed{}$$

Ex 101:

$$\frac{3}{8} + \frac{1}{2} = \boxed{}$$

G.5 SUBTRACTING FRACTIONS

Ex 102:

$$\frac{2}{5} - \frac{3}{10} = \frac{\boxed{}}{10} - \frac{\boxed{}}{10}$$

$$= \frac{}{10}$$

Ex 103:

$$\frac{7}{6} - \frac{1}{3} = \boxed{\frac{}{6} - \frac{}{6}}$$
$$= \boxed{\frac{}{6}}$$

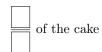
Ex 104:

$$\frac{7}{8} - \frac{3}{4} = \frac{8}{8} - \frac{8}{8}$$
$$= \frac{8}{8}$$

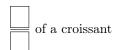
Ex 105:

$$\frac{5}{3} - \frac{5}{9} = \boxed{9} - \boxed{9}$$

$$= \boxed{9}$$


Ex 106:

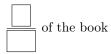
$$\frac{7}{2} - \frac{7}{4} = \boxed{\boxed{4} - \boxed{4}}$$


$$= \boxed{\boxed{4}$$

G.6 SOLVING REAL-WORLD PROBLEMS

Ex 107: Louis has a whole cake. He cuts it into 8 equal slices and eats 3 slices. What fraction of the whole cake remains?

Ex 108: Today, Louis eats $\frac{1}{2}$ of a croissant. Then, Louis eats $\frac{1}{4}$ of another croissant. How much croissant did Louis eat in total?



Ex 109: At the beginning, there are $\frac{5}{6}$ of a cake. After eating, there are $\frac{2}{3}$ of the cake. What quantity of cake did Louis eat?

Ex 110: At the beginning, there are $\frac{7}{8}$ of a pizza. After eating, there are $\frac{3}{4}$ of the pizza. What quantity of pizza did Louis eat?

Ex 111: Louis read $\frac{2}{5}$ of his book on Saturday and $\frac{3}{10}$ of his book on Sunday. How much of his book did Louis read in total?

