FACTORIZATION OF ALGEBRAIC EXPRESSIONS

Factorization is the reverse process of expansion. While expanding converts a product into a sum, factorization converts a sum into a product.

Mastering factorization is a crucial skill for simplifying complex expressions and solving higher-degree equations. Unless stated otherwise, we work with real numbers in this chapter.

A COMMON FACTOR LAWS

The **common factor** laws are the reverse of the distributive laws: instead of expanding brackets, we look for a common factor to "pull out" and introduce brackets.

Proposition Common Factor Laws

$$ab + ac = a(b+c)$$
 and $ab - ac = a(b-c)$

Ex: Factorize 2x + 2.

Answer:

$$2x + 2 = 2 \times x + 2 \times 1$$

= 2(x + 1).

B DIFFERENCE OF SQUARES

Proposition Difference of Squares

$$a^2 - b^2 = (a - b)(a + b)$$

Ex: Factorize $x^2 - 9$.

Answer:

$$x^{2} - 9 = x^{2} - 3^{2}$$
$$= (x - 3)(x + 3).$$

Note Any non-negative real number c can be written as a perfect square: $c = (\sqrt{c})^2$. This allows us to rewrite expressions such as $x^2 - c$ as a difference of squares and apply the formula above.

Ex: Factorize $x^2 - 3$.

Answer: We can write 3 as $(\sqrt{3})^2$ to create a difference of squares.

$$x^{2} - 3 = x^{2} - \left(\sqrt{3}\right)^{2}$$
$$= \left(x - \sqrt{3}\right)\left(x + \sqrt{3}\right).$$

Note A sum of squares $a^2 + b^2$ cannot be factored over the real numbers.

Ex: Factorize if possible: $x^2 + 1$.

Answer: Since $x^2 + 1 = x^2 + 1^2$ is a sum of squares, it cannot be factored into linear factors with real coefficients.

C PERFECT SQUARE TRINOMIALS

Proposition Perfect Square Trinomials

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$

 $a^{2} - 2ab + b^{2} = (a - b)^{2}$

Ex: Factorize $x^2 + 2x + 1$.

Answer: We check if this fits the form $a^2 + 2ab + b^2$.

- The first term is x^2 , so let a = x.
- The last term is $1 = 1^2$, so let b = 1.
- We check if the middle term is 2ab: 2(x)(1) = 2x. It matches.

Therefore, the expression is a perfect square:

$$x^{2} + 2x + 1 = x^{2} + 2(x)(1) + 1^{2}$$
$$= (x+1)^{2}.$$