A POSITIVE EXPONENTS

A.1 WRITING REPEATED MULTIPLICATION IN EXPONENT FORM

Ex 1: Write in exponent form:

$$2 \times 2 \times 2 =$$

Ex 2: Write in exponent form:

$$3 \times 3 \times 3 \times 3 =$$

Ex 3: Write in exponent form:

$$5 \times 5 =$$

Ex 4: Write in exponent form:

$$7 \times 7 \times 7 =$$

Ex 5: Write in exponent form:

$$10 \times 10 \times 10 \times 10 \times 10 = \boxed{}$$

A.2 WRITING IN EXPONENT FORM FROM VERBAL EXPRESSIONS

Ex 6: Write in exponent form:

2 raised to the power of
$$3 =$$

Ex 7: Write in exponent form:

5 raised to the power of
$$2 = \square$$

Ex 8: Write in exponent form:

7 raised to the power of
$$4 = \boxed{}$$

Ex 9: Write in exponent form:

10 raised to the power of
$$5 =$$

A.3 CALCULATING POWERS

Ex 10: Evaluate the power:

$$2^3 =$$

Ex 11: Evaluate the power:

$$5^2 =$$

Ex 12: Evaluate the power:

$$3^4 =$$

Ex 13: Evaluate the power:

$$10^3 =$$

A.4 EXPRESSING NUMBERS IN EXPONENT FORM

Ex 14: Write in exponent form:

Ex 15: Write in exponent form:

Ex 16: Write in exponent form:

Ex 17: Write in exponent form:

A.5 INTERPRETING POWERS

MCQ 18: Determine if the following statement is True or False:

$$2^3 = 2 + 2 + 2$$

□ True

 \square False

MCQ 19: Determine if the following statement is True or False:

$$3^2 = 2 \times 2 \times 2$$

□ True

 \square False

MCQ 20: Determine if the following statement is True or False:

$$4^3 = 4 \times 4 \times 4$$

□ True

□ False

MCQ 21: Determine if the following statement is True or False:

$$3 \times 4 = 4 + 4 + 4$$

☐ True

□ False

A.6 EVALUATING EXPRESSIONS WITH POWERS

Ex 22: Evaluate the expression:

$$2^3 \times 3^2 =$$

Ex 23: Evaluate the expression:

$$3^2 \times 10^2 =$$

Ex 24: Evaluate the expression:

$$6 \times 10^3 =$$

Ex 25: Evaluate the expression:

$$2.5 \times 10^2 =$$

A.7 CHECKING EQUALITY BETWEEN PRODUCTS AND POWERS

MCQ 26: Determine if the following statement is True or False:

$$2 \times 2 \times 3 \times 3 = 2^4$$

☐ True

□ False

MCQ 27: Determine if the following statement is True or False:

$$2 \times 2 \times 2 = 3^2$$

☐ True

□ False

MCQ 28: Determine if the following statement is True or False:

$$2 \times 3 \times 2 \times 3 = 2^2 \times 3^2$$

☐ True

 $\hfill\Box$ False

MCQ 29: Determine if the following statement is True or False:

$$5 \times 5 \times 5 \times 4 = 5^3 \times 2^2$$

☐ True

☐ False

A.8 WRITING REPEATED MULTIPLICATION OF AN ALGEBRAIC EXPRESSION IN EXPONENT FORM

Ex 30: Write in exponent form:

$$x \times x \times x =$$

Ex 31: Write in exponent form:

$$x \times x = \boxed{}$$

MCQ 32: Which expressions are equal to x? Choose all answers that apply:

 $\Box x^2$

 $\Box x^1$

 \Box 1

Ex 33: Write in exponent form:

$$x \times x \times x \times x =$$

A.9 WRITING ALGEBRAIC EXPRESSIONS IN EXPONENT FORM FROM VERBAL DESCRIPTIONS

Ex 34: Write in exponent form:

$$x \text{ squared} = \boxed{}$$

Ex 35: Write in exponent form:

$$x$$
 to the power of $4 =$

Ex 36: Write in exponent form:

$$x \text{ cubed} = \boxed{}$$

 \mathbf{Ex} 37: Write in exponent form:

$$x$$
 to the power of $5 =$

B NEGATIVE EXPONENTS

B.1 WRITING NEGATIVE EXPONENTS AS FRACTIONS

Ex 38: Write as a fraction:

$$3^{-2} =$$

 \mathbf{Ex} 39: Write as a fraction:

$$10^{-3} =$$

Ex 40: Write as a fraction:

$$2^{-1} =$$

Ex 41: Write as a fraction:

$$5^{-2} =$$

B.2 WRITING FRACTIONS AS NEGATIVE EXPONENTS

Ex 42: Write using a negative exponent:

$$\frac{1}{4} = \square$$

Ex 43: Write using a negative exponent:

$$\frac{1}{27} = \square$$

Ex 44: Write using a negative exponent:

$$\frac{1}{1000} = \Box$$

Ex 45: Write using a negative exponent:

$$\frac{1}{25} = \boxed{}$$

C RATIONAL EXPONENTS

C.1 EXPRESSING ROOTS USING EXPONENTS

Ex 46: Write in exponent form:

$$\sqrt{3} =$$

Ex 47: Write in exponent form:

$$\frac{1}{\sqrt{7}} = \boxed{}$$

Ex 48: Write in exponent form:

$$\sqrt{7} =$$

Ex 49: Write in exponent form:

$$\frac{1}{\sqrt{3}} = \boxed{}$$

Ex 50: Write in exponent form:

$$\sqrt{x} = \boxed{}$$

C.2 CALCULATING POWERS AND ROUNDING

Ex 51: Calculate:

$$3^{\frac{1}{2}} =$$
 [rounded to 2 decimal places]

Ex 52: Calculate:

$$2^{\frac{1}{2}} =$$
 [rounded to 2 decimal places)

Ex 53: Calculate:

$$2^{-\frac{1}{2}} =$$
 (rounded to 2 decimal places)

Ex 54: Calculate:

$$100^{-\frac{1}{2}} =$$
 (rounded to 2 decimal places)

D EXPONENT LAW 1

D.1 SIMPLIFYING PRODUCTS OF POWERS

Ex 55: Simplify:

$$7^3 \times 7^2 =$$

Ex 56: Simplify:

$$2^4 \times 2^3 =$$

Ex 57: Simplify:

$$3^5 \times 3^2 =$$

Ex 58: Simplify:

$$10^6 \times 10^2 =$$

Ex 59: Simplify:

$$2^3 \times 2 =$$

Ex 60: Simplify:

$$3 \times 3^4 =$$

D.2 SIMPLIFYING PRODUCTS OF ALGEBRAIC POWERS

Ex 61: Simplify:

$$x^2 \times x^3 =$$

Ex 62: Simplify:

$$x \times x^2 =$$

Ex 63: Simplify:

$$x^2 \times x^2 =$$

Ex 64: Simplify:

$$x^3 \times x =$$

D.3 IDENTIFYING CORRECT EXPONENTIAL EXPRESSIONS

MCQ 65: Which expressions are equal to $2^2 + 2^1$? Choose all answers that apply:

 \Box 6

 \square 2³

 $\Box 4^3$

MCQ 66: Which expressions are equal to $5^2 \times 5^1$? Choose all answers that apply:

 \square 25

□ 125

 \Box 5³

MCQ 67: Which expressions are equal to $3^2 + 3^1$? Choose all answers that apply:

 \Box 12

 \square 3³

 \square 9³

MCQ 68: Which expressions are equal to $4^3 \times 4^2$? Choose all answers that apply:

 \square 4⁵

 \Box 64

□ 1024

D.4 SIMPLIFYING EXPRESSIONS OF POWERS

Ex 69: Simplify:

$$x^{-2} x^3 = \Box$$

Ex 70: Simplify:

$$2^2 \, 2^{-3} \, 2^{-3} =$$

Ex 71: Simplify:

$$x x^3 x^{-2} =$$

Ex 72: Simplify:

$$x^3 \times x^{-3} = \square$$

E EXPONENT LAW 2

E.1 SIMPLIFYING FRACTIONS OF POWERS

Ex 73: Simplify:

$$\frac{7^5}{7^2} = \boxed{}$$

Ex 74: Simplify:

$$\frac{5^6}{5^4} = \boxed{}$$

Ex 75: Simplify:

$$\frac{2^3}{2^5} = \boxed{}$$

Ex 76: Simplify:

$$\frac{3}{3^5} = \boxed{}$$

Ex 77: Simplify:

$$\frac{7^2}{76} =$$

E.2 SIMPLIFYING FRACTIONS OF ALGEBRAIC POWERS

Ex 78: Simplify:

$$\frac{x}{x^5} = \boxed{}$$

Ex 82: Simplify:

F EXPONENT LAW 3

F.1 SIMPLIFYING POWERS OF POWERS

Ex 83: Simplify:

$$(5^2)^3 =$$

$$\left(7^3\right)^2 = \boxed{}$$

$$(3^2)^4 =$$

Ex 86: Simplify:

$$(2^5)^2 =$$

F.2 SIMPLIFYING POWERS OF POWERS

Ex 87: Simplify:

$$(x^2)^4 =$$

$$(x^5)^2 =$$

G EXPONENT LAW 4

G.1 SIMPLIFYING POWERS OF PRODUCTS

Ex 91: Simplify:

$$(3\times5)^2 = \boxed{}$$

Ex 92: Simplify:

$$(2 \times 3)^4 =$$

Ex 93: Simplify:

$$(3 \times 7)^3 =$$

Ex 94: Simplify:

$$(3 \times 5 \times 7)^2 = \boxed{}$$

G.2 SIMPLIFYING POWERS OF PRODUCTS

Ex 95: Simplify:

$$(2 \times x)^3 = \boxed{}$$

Ex 96: Simplify:

$$(x \times 3)^2 = \boxed{}$$

Ex 97: Simplify:

$$(5 \times x)^4 = \boxed{}$$

Ex 98: Simplify:

$$(x \times 2)^5 = \boxed{}$$

H EXPONENT LAW 5

H.1 SIMPLIFYING POWERS OF FRACTIONS

Ex 99: Simplify:

$$\left(\frac{5}{3}\right)^2 =$$

Ex 100: Simplify:

$$\left(\frac{2}{7}\right)^3 =$$

Ex 101: Simplify:

$$\left(\frac{1}{2}\right)^2 =$$

Ex 102: Simplify:

$$\left(\frac{1}{3}\right)^3 =$$

H.2 SIMPLIFYING POWERS OF ALGEBRAIC FRACTIONS

Ex 103: Simplify:

$$\left(\frac{x}{2}\right)^4 =$$

Ex 104: Simplify:

$$\left(\frac{1}{x}\right)^3 =$$

Ex 105: Simplify:

Ex 106: Simplify:

$$\left(\frac{x}{10}\right)^2 =$$

I EXPONENT LAW 6

I.1 EXPRESSING NEGATIVE EXPONENTS AS FRACTIONS

Ex 107: Write as a fraction:

$$\left(\frac{4}{7}\right)^{-1} = \boxed{}$$

Ex 108: Write as a fraction:

$$\left(\frac{5}{3}\right)^{-2} = \boxed{}$$

Ex 109: Write as a fraction:

$$\left(\frac{1}{2}\right)^{-3} = \square$$

Ex 110: Write as a fraction:

$$\left(\frac{2}{3}\right)^{-3} = \boxed{\phantom{\frac{1}{3}}}$$

I.2 MULTIPLYING BY THE INVERSE

Ex 111: Simplify:

$$\frac{3}{2} \times \left(\frac{3}{2}\right)^{-1} = \square$$

Ex 112: Simplify:

$$\frac{x}{2} \times \left(\frac{x}{2}\right)^{-1} = \square$$

Ex 113: Simplify:

$$\frac{a}{b} \times \left(\frac{a}{b}\right)^{-1} = \square$$

J ORDER OF OPERATIONS

J.1 EVALUATING EXPRESSIONS WITH EXPONENTS IN 2 STEPS

Ex 114: Evaluate this expression:

$$2 \times 5^2 = \boxed{}$$

Ex 115: Evaluate this expression:

$$2^3 - 1 = \boxed{}$$

Ex 116: Evaluate this expression:

$$(2+1)^2 =$$

Ex 117: Evaluate this expression:

$$2^3 \div 4 = \boxed{}$$

Ex 118: Evaluate this expression:

$$(5-2)^2 =$$

J.2 EVALUATING EXPRESSIONS WITH EXPONENTS IN 3 STEPS

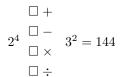
Ex 119: Evaluate this expression:

$$2^3 \times (8-6) =$$

Ex 120: Evaluate this expression:

$$(2+1)^2 - 1 =$$

Ex 121: Evaluate this expression:


$$(3^2 - 1) \times 4 = \boxed{}$$

Ex 122: Evaluate this expression:

J.3 FINDING THE OPERATORS

Ex 123:

Ex 124:

Ex 125:

$$\begin{array}{ccc}
\square + \\
2^3 & \square - \\
\square \times & 4 = 2
\end{array}$$

Ex 126:

$$\begin{array}{ccc} & \square + & \\ \square - & \\ \square \times & \\ \square \div & \end{array}$$

J.4 COMBINING NEGATIVE POWERS WITH ARITHMETIC

Ex 127: Write as a fraction:

$$1 + 2^{-1} =$$

Ex 128: Write as a fraction:

$$3^{-1} - 1 = \boxed{}$$

\mathbf{Ex} 129: Write as a fraction:

$$5 \times 3^{-2} =$$

Ex 130: Write as a fraction:

$$\frac{4}{5} \times 2^{-2} =$$

J.5 SIMPLIFYING ALGEBRAIC EXPRESSIONS

Ex 131: Simplify the expression:

$$2x^2 + 3x^2 =$$

Ex 132: Simplify the expression:

$$3x^2 - x^2 =$$

Ex 133: Simplify the expression:

$$2x^2 + 3x + x = \boxed{}$$

Ex 134: Simplify the expression:

$$x^2 + 2x + x^2 + 5x + 1 =$$

Ex 135: Simplify the expression:

$$3x^2 + 4 + 2x + x^2 + 6x + 1 =$$

Ex 136: Simplify the expression:

J.6 SIMPLIFYING EXPRESSIONS OF POWERS

Ex 137: Simplify:

$$\frac{2^3}{2} \times 2^3 = \boxed{}$$

$$x^3 imes \frac{x^4}{x^2} = \square$$

$$\frac{x}{r^2} x^{-1} = \boxed{}$$

$$\frac{2^2}{2 \times 2^3} = \boxed{}$$

$$\left(\frac{x}{2}\right)^2 \times 4 = \square$$

Ex 142: Simplify:

J.7 EVALUATING TO AN INTEGER

Ex 143: Express as an integer:

$$\sqrt{2} \times 2^{\frac{1}{2}} = \boxed{}$$

Ex 144: Express as an integer:

$$\frac{2^{\frac{3}{2}}}{\sqrt{2}} = \boxed{}$$

Ex 145: Express as an integer:

$$\left(\sqrt{2}\right)^4 = \boxed{}$$

Ex 146: Express as an integer:

$$(3\sqrt{2})^2 =$$

K SCIENTIFIC NOTATION

K.1 WRITING NUMBERS AS POWERS OF TEN

Ex 147: Write in exponent form:

Ex 148: Write in exponent form:

Ex 149: Write in exponent form:

Ex 150: Write in exponent form:

$$0.0001 =$$

K.2 EXPRESSING NUMBERS IN SCIENTIFIC NOTATION

Ex 151: Write in scientific notation:

$$123 = \boxed{} \times \boxed{}$$

Ex 152: Write in scientific notation:

Ex 153: Write in scientific notation:

$$5\,000\,000 = \boxed{\times}$$

Ex 154: Write in scientific notation:

Ex 155: Write in scientific notation:

$$0.05 = \boxed{\times}$$

Ex 156: Write in scientific notation:

$$0.12 = \boxed{} \times$$

Ex 157: Write in scientific notation:

$$0.000\,59 = \times$$

K.3 EXPRESSING IN DECIMAL FORM

Ex 158: Write in decimal form:

$$8.2 \times 10^2 =$$

Ex 159: Write in decimal form:

$$1.25 \times 10^3 =$$

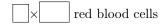
Ex 160: Write in decimal form:

$$5 \times 10^6 =$$

Ex 161: Write in decimal form:

$$2 \times 10^{-2} =$$

Ex 162: Write in decimal form:


$$8.5 \times 10^{-1} =$$

Ex 163: Write in decimal form:

$$9.1 \times 10^{-5} =$$

K.4 EXPRESSING REAL-WORLD QUANTITIES IN SCIENTIFIC NOTATION

Ex 164: There are approximately 4 million red blood cells in a drop of blood. Write the quantity in scientific notation:

Ex 165: There are approximately 3 billion stars in the galaxy. Write the quantity in scientific notation:

$$\times$$
 stars

Ex 166: There are approximately 7.5 billion people on Earth. Write the quantity in scientific notation:

Ex 167: The distance from the Earth to the Sun is approximately 150 million kilometers. Write the quantity in scientific notation:

L EXPONENTIAL EXPRESSION

L.1 SIMPLIFYING USING EXPONENT LAWS

Ex 168: Simplify:

$$3^{x-1} \times 3^{x+1} =$$

Ex 169: Simplify:

$$\frac{2^{x+2}}{2} =$$

Ex 170: Simplify:

$$\frac{4^{x+1}}{2^x} =$$

Ex 171: Simplify:

L.2 SIMPLIFYING EXPONENTIAL EXPRESSIONS

Ex 172: Simplify:

$$\frac{3^x + 6^x}{3^x} = \boxed{}$$

Ex 173: Simplify:

$$\frac{2^{x+2}+2^x}{5} = \boxed{ }$$

Ex 174: Simplify:

$$3^x(n+1) - 3^x =$$

Ex 175: Simplify:

$$\frac{4^x - 2^x}{2^x} = \boxed{ }$$

L.3 EXPANDING AND SIMPLIFYING EXPONENTIAL EXPRESSIONS

Ex 176: Expand and simplify:

$$(2^x - 1)(2^x + 1) =$$

Ex 177: Expand and simplify:

$$(2^x - 1)^2 =$$

Ex 178: Expand and simplify:

$$(3^x + 3^{-x})^2 =$$

L.4 FACTORIZING EXPONENTIAL EXPRESSIONS

Ex 179: Factorize:

$$2^{2x} - 2^x =$$

Ex 180: Factorize:

$$3^{2x} - 2 \cdot 3^x + 1 =$$

Ex 181: Factorize:

$$(x+1)2^x - 2^{x+1} =$$

Ex 182: Factorize:

$$4^x - 3 \cdot 2^x + 2 =$$

M THE EXPONENTIAL NUMBER e

M.1 SIMPLIFYING USING EXPONENT LAWS

Ex 183: Simplify:

$$e^{x-1} \times e^{x+1} =$$

Ex 184: Simplify:

Ex 185: Simplify:

Ex 186: Simplify:

M.2 SIMPLIFYING EXPONENTIAL EXPRESSIONS

Ex 187: Simplify:

Ex 188: Simplify:

Ex 189: Simplify:

$$\frac{e^{2x}-1}{e^x-1} =$$

M.3 EXPANDING AND SIMPLIFYING EXPONENTIAL EXPRESSIONS

Ex 190: Expand and simplify:

$$(e^x - 1)(e^x + 1) =$$

Ex 191: Expand and simplify:

$$(e^x + e^{-x})^2 =$$

Ex 192: Expand and simplify:

$$(e^x - e^{-x})^2 =$$

Ex 193: Expand and simplify:

$$(e^x + 2)(e^x - 3) =$$

M.4 FACTORIZING EXPONENTIAL EXPRESSIONS	Ex 202: Solve for x : $e^x = 1$
Ex 194: Factorize: $e^{2x} - e^x = $	
Ex 195: Factorize: $e^{2x} - 2e^x + 1 =$	N.2 SOLVING BY EQUATING INDICES: LEVEL 2
Ex 196: Factorize: $xe^x - e^{x+1} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ex 203: Solve for x : $3^{x-2} = 81$
Ex 197: Factorize: $e^{2x} - 3e^x + 2 =$	
N EXPONENTIAL EQUATIONS	
N.1 SOLVING BY EQUATING INDICES: LEVEL 1	Ex 204: Solve for x : $5 \cdot 2^x = 40$
Ex 198: Solve for x : $2^x = 16$	

Ex 199: Solve for x: $3^x = 27$ Ex 205: Solve for x: $4^x = 32$

Ex 200: Solve for x: $2^x = \frac{1}{4}$

Ex 206: Solve for x: $e^{2x} = e^x$

Ex 201: Solve for x: $5^x = \sqrt{5}$

N.3 SOLVING BY EQUATING INDICES: LEVEL 3

Ex 207: Solve for x: $4^{x+1} = 8^{2x-2}$

Ex 208: Solve for x : $3^{2x+1} = 27 \cdot 3^{x-1}$	
Ex 208: Solve for x : $5 = 27 \cdot 5$	Ex 212: Solve for x : $e^{2x} + e^x - 2 = 0$
Ex 209: Solve for x : $2^{x^2} = 4^x$	
N.4 SOLVING EQUATIONS IN QUADRATIC FORM	
Ex 210: Solve for x : $4^x + 2^x - 20 = 0$	

Ex 211: Solve for x: $e^{2x} - 2e^x + 1 = 0$