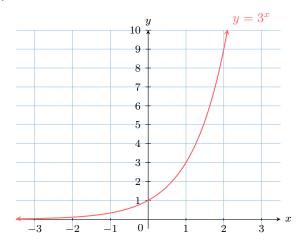
EXPONENTIAL FUNCTIONS

A EXPONENTIAL FUNCTIONS

A.1 READING AND SKETCHING EXPONENTIAL FUNCTIONS

Ex 1:

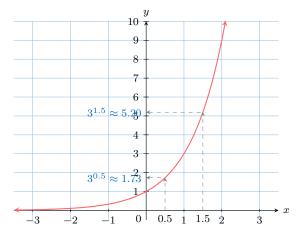


By reading from the graph of $y=3^x$, complete the following inequalities with consecutive integers:

1.
$$\boxed{5} \le 3^{1.5} < \boxed{6}$$

2.
$$\boxed{1} \le 3^{0.5} < \boxed{2}$$

Answer: The values can be estimated visually using the graph above:



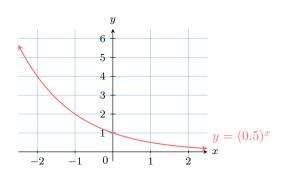
1. We read $3^{1.5} \approx 5.2$, so the answer is **between 5 and 6.**

$$\boxed{5} \le 3^{1.5} < \boxed{6}$$

2. We read $3^{0.5} \approx 1.7$, so the answer is **between 1 and 2.**

$$\boxed{1} \leq 3^{0.5} < \boxed{2}$$

Ex 2:

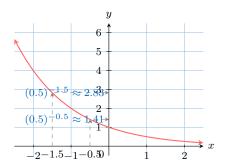


By reading from the graph of $y = (0.5)^x$, complete the following inequalities with consecutive integers:

1.
$$\boxed{1} \le (0.5)^{-0.5} < \boxed{2}$$

2.
$$\boxed{2} \le (0.5)^{-1.5} < \boxed{3}$$

 ${\it Answer:}$ The values can be estimated visually using the graph above:



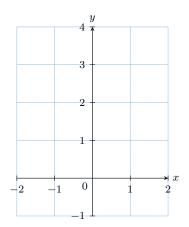
1. We read $(0.5)^{-0.5} \approx 1.41$, so the answer is **between 1 and 2**

$$1 \le (0.5)^{-0.5} < 2$$

2. We read $(0.5)^{-1.5} \approx 2.83$, so the answer is **between 2 and 3.**

$$2 \le (0.5)^{-1.5} < 3$$

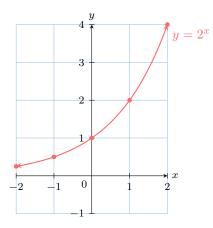
Ex 3: Sketch the graph of the function $f(x) = 2^x$. Use a table of values for integer values of x from -2 to 2 to help you plot key points.



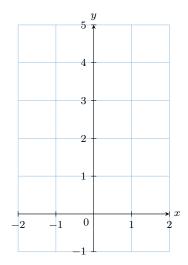
Answer: Fill in the table of values:

x	-2	-1	0	1	2
f(x)	0.25	0.5	1	2	4

Plot the points and draw the graph:



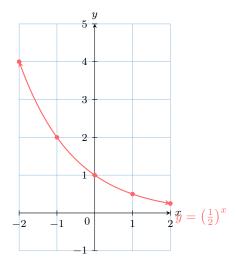
Ex 4: Sketch the graph of the function $f(x) = \left(\frac{1}{2}\right)^x$. Use a table of values for integer values of x from -2 to 2 to help you plot key points.



Answer: Fill in the table of values:

x	-2	-1	0	1	2
f(x)	4	2	1	0.5	0.25

Plot the points and draw the graph:



A.2 EVALUATING EXPONENTIAL FUNCTIONS

Ex 5: For $f(x) = 3^x$, evaluate:

1.
$$f(2) = 9$$

2.
$$f(0) = \boxed{1}$$

3.
$$f(-1) = \boxed{\frac{1}{3}}$$

Answer:

1.
$$f(2) = 3^2$$

= 9

2.
$$f(0) = 3^0$$

= 1

3.
$$f(-1) = 3^{-1}$$

= $\frac{1}{3^1}$
= $\frac{1}{3}$

Ex 6: For $f(x) = 10^x$, evaluate:

1.
$$f(2) = 100$$

2.
$$f(0) = \boxed{1}$$

3.
$$f(-1) = \boxed{\frac{1}{10}}$$

Answer:

1.
$$f(2) = 10^2$$

= 100

2.
$$f(0) = 10^0$$

3.
$$f(-1) = 10^{-1}$$

= $\frac{1}{10^1}$
= $\frac{1}{10}$

Ex 7: For $f(x) = \left(\frac{1}{2}\right)^x$, evaluate:

1.
$$f(-2) = \boxed{4}$$

2.
$$f(-1) = \boxed{2}$$

3.
$$f(0) = \boxed{1}$$

4.
$$f(1) = \boxed{\frac{1}{2}}$$

Answer:

1.
$$f(-2) = \left(\frac{1}{2}\right)^{-2}$$
$$= \left(\frac{2}{1}\right)^{2}$$
$$= 2^{2}$$
$$= 4$$

2.
$$f(-1) = \left(\frac{1}{2}\right)^{-1}$$
$$= \left(\frac{2}{1}\right)^{1}$$
$$= 2$$

$$3. \ f(0) = \left(\frac{1}{2}\right)^0$$
$$= 1$$

$$4. \ f(1) = \left(\frac{1}{2}\right)^1$$
$$= \frac{1}{2}$$

B NATURAL EXPONENTIAL FUNCTION e^x

B.1 CALCULATING WITH THE NATURAL EXPONENTIAL FUNCTION

Ex 8: Using your calculator, evaluate the following values of $f(x) = e^x$. Round your answers to 2 decimal places.

1.
$$e^1 \approx \boxed{2.72}$$

2.
$$e^2 \approx 7.39$$

3.
$$e^{-1} \approx \boxed{0.37}$$

4.
$$\sqrt{e} \approx \boxed{1.65}$$

Answer: Using the e^x button on the calculator:

1.
$$e^1 \approx 2.718... \approx 2.72$$

2.
$$e^2 \approx 7.389... \approx 7.39$$

3.
$$e^{-1} \approx 0.367... \approx 0.37$$

4.
$$\sqrt{e} = e^{0.5} \approx 1.648... \approx 1.65$$

Ex 9: Simplify the following expressions using the laws of exponents.

$$1. e^x \cdot e^2 = e^{x+2}$$

$$2. \ \frac{e^{3x}}{e^x} = \boxed{e^{2x}}$$

3.
$$(e^2)^x = e^{2x}$$

Answer:

- 1. When multiplying terms with the same base, add the exponents: $e^x \cdot e^2 = e^{x+2}$.
- 2. When dividing terms with the same base, subtract the exponents: $\frac{e^{3x}}{e^x}=e^{3x-x}=e^{2x}.$
- 3. When raising a power to a power, multiply the exponents: $(e^2)^x = e^{2x}$.

Ex 10: Solve the following equations for x without using a calculator.

1.
$$e^x = 1 \implies x = \boxed{0}$$

$$2. \ e^x = e^5 \implies x = \boxed{5}$$

3.
$$e^x = -3 \implies \boxed{\textbf{No solution}}$$

Answer:

- 1. Since $e^0 = 1$, we have x = 0.
- 2. Since the bases are the same, the exponents must be equal: x = 5.
- 3. The range of e^x is $(0, \infty)$, meaning e^x is always positive. Therefore, $e^x = -3$ has **no solution**.

B.2 GRAPHING AND PROPERTIES OF THE NATURAL EXPONENTIAL FUNCTION

Ex 11: Based on the properties of the natural exponential function $y = e^x$:

1. What are the coordinates of the y-intercept?

2. What is the equation of the horizontal asymptote?

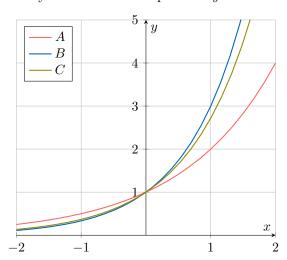
$$y = \boxed{0}$$

3. Is the function strictly increasing or decreasing?

Answer:

- 1. Since $e^0 = 1$, the graph passes through (0, 1).
- 2. As $x \to -\infty$, e^x gets closer to 0. The asymptote is $\mathbf{y} = \mathbf{0}$.
- 3. Since the base $e \approx 2.718 > 1$, the function is strictly increasing.

Ex 12: The graphs of $y = 2^x$, $y = 3^x$, and $y = e^x$ are plotted below. Identify which curve corresponds to $y = e^x$.



The curve representing $y = e^x$ is: $\boxed{\mathbf{C}}$

Answer: We know that $e \approx 2.718$. Comparing the bases:

$$2 < 2.718 < 3 \implies 2 < e < 3$$

Therefore, for x > 0, the graph of e^x must lie between the graphs of 2^x and 3^x .

- Curve A is 2^x (slowest growth).
- Curve B is 3^x (fastest growth).
- Curve C is e^x (middle growth).

Ex 13: Consider the function $g(x) = e^x - 2$.

1. Calculate the y-intercept of the graph of g.

$$y = \boxed{-1}$$

2. Determine the equation of the horizontal asymptote of g.

$$y = \boxed{-2}$$

Answer:

1. The y-intercept occurs when x = 0:

$$g(0) = e^0 - 2 = 1 - 2 = -1$$

2. The horizontal asymptote of e^x is y = 0. Since g(x) is translated down by 2 units, the new asymptote is y = 0 - 2, so $\mathbf{y} = -2$.

C TRANSFORMATIONS OF EXPONENTIAL FUNCTIONS

C.1 CALCULATING f(x)

Ex 14: For $f: x \mapsto 3 \cdot 2^x$, find in simplest form:

- 1. $f(0) = \boxed{3}$
- 2. $f(2) = \boxed{12}$
- 3. $f(-1) = \boxed{\frac{3}{2}}$

Answer:

- 1. $f(0) = 3 \cdot 2^0$ = $3 \cdot 1$ = 3
- 2. $f(2) = 3 \cdot 2^2$ = $3 \cdot 4$ = 12
- 3. $f(-1) = 3 \cdot 2^{-1}$ = $3 \cdot \frac{1}{2}$ = $\frac{3}{2}$

Ex 15: For $f: x \mapsto 5 \cdot e^x$, find in simplest form:

- 1. $f(0) = \boxed{5}$
- 2. f(1) = 5e
- 3. $f(\ln 2) = \boxed{10}$

Answer:

1.
$$f(0) = 5 \cdot e^0$$

= $5 \cdot 1$
= 5

- 2. $f(1) = 5 \cdot e^1$ = 5e
- 3. $f(\ln 2) = 5 \cdot e^{\ln 2}$ = $5 \cdot 2$ = 10

Ex 16: For $f: x \mapsto \left(\frac{1}{3}\right)^x + 1$, find in simplest form:

- 1. $f(0) = \boxed{2}$
- 2. f(2) = 10/9
- 3. $f(-2) = \boxed{10}$

Answer:

- 1. $f(0) = \left(\frac{1}{3}\right)^0 + 1$ = 1 + 1 = 2
- 2. $f(2) = \left(\frac{1}{3}\right)^2 + 1$ = $\frac{1}{9} + 1$ = $\frac{10}{9}$
- 3. $f(-2) = \left(\frac{1}{3}\right)^{-2} + 1$ = $3^2 + 1$ = 9 + 1= 10

C.2 FINDING f(g(x))

Ex 17: For the function f(x) = x + 1 and $g(x) = 4^x$, find and simplify:

$$(f \circ g)(x) = \boxed{4^x + 1}$$

Answer:

$$(f \circ g)(x) = f(g(x))$$
$$= f(4^{x})$$
$$= 4^{x} + 1$$

Ex 18: For the function f(x) = x + 1 and $g(x) = 4^x$, find and simplify:

$$(g \circ f)(x) = \boxed{4^{x+1}}$$

Answer:

$$(g \circ f)(x) = g(f(x))$$
$$= g(x+1)$$
$$= 4^{x+1}$$

Ex 19: For the function f(x) = 3x and $g(x) = e^x$, find and simplify:

$$(f \circ g)(x) = 3e^x$$

Answer:

$$(f \circ g)(x) = f(g(x))$$
$$= f(e^x)$$
$$= 3e^x$$

Ex 20: For the function f(x) = 3x and $g(x) = e^x$, find and simplify:

$$(g \circ f)(x) = e^{3x}$$

Answer:

$$(g \circ f)(x) = g(f(x))$$
$$= g(3x)$$
$$= e^{3x}$$

Ex 21: For the function f(x) = x - 2 and $g(x) = 5^x$, find and simplify:

$$(f \circ g)(x) = \boxed{5^x - 2}$$

Answer:

$$(f \circ g)(x) = f(g(x))$$
$$= f(5^{x})$$
$$= 5^{x} - 2$$

Ex 22: For the function f(x) = x - 2 and $g(x) = 5^x$, find and simplify:

$$(g \circ f)(x) = \boxed{5^{x-2}}$$

Answer:

$$(g \circ f)(x) = g(f(x))$$
$$= g(x - 2)$$
$$- 5^{x-2}$$

C.3 DESCRIBING TRANSFORMATIONS OF EXPONENTIAL GRAPHS

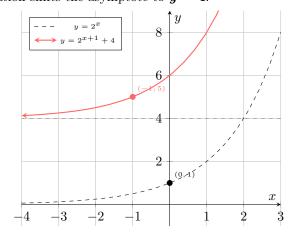
Ex 23: Describe the sequence of transformations that maps the graph of $y = 2^x$ to the graph of $f(x) = 2^{x+1} + 4$.

Answer: The function $f(x) = 2^{x+1} + 4$ is a transformation of the base function $y = 2^x$.

The transformations are:

- 1. A horizontal translation of 1 unit to the left. This is because of the (x + 1) term in the exponent.
- 2. A vertical translation of 4 units upwards. This is because of the +4 term.

The horizontal asymptote of $y = 2^x$ is y = 0. The vertical translation shifts the asymptote to y = 4.

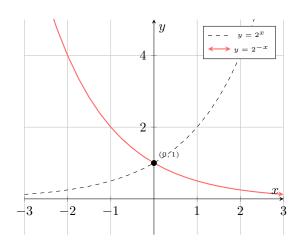


Ex 24: Describe the transformation that maps the graph of $y = 2^x$ to the graph of $f(x) = 2^{-x}$.

Answer: The function $f(x) = 2^{-x}$ is a transformation of the base function $y = 2^x$.

The transformation is a **reflection in the y-axis**.

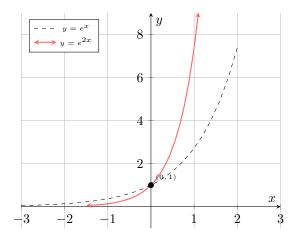
This occurs because the input x is replaced with -x. The horizontal asymptote remains y=0.



Ex 25: Describe the transformation that maps the graph of $y = e^x$ to the graph of $f(x) = e^{2x}$.

Answer: The function $f(x) = e^{2x}$ is a transformation of the base function $y = e^x$.

The transformation is a **horizontal stretch** by a factor of $\frac{1}{2}$. This means the graph is compressed horizontally towards the y-axis. The horizontal asymptote remains y = 0.



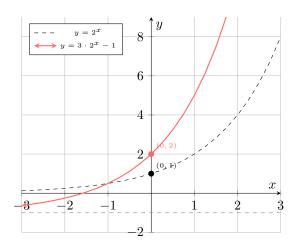
Ex 26: Describe the sequence of transformations that maps the graph of $y = 2^x$ to the graph of $f(x) = 3 \cdot 2^x - 1$.

Answer: The function $f(x) = 3 \cdot 2^x - 1$ is a transformation of the base function $y = 2^x$.

The transformations are:

- 1. A **vertical stretch** by a factor of **3**.
- 2. A vertical translation of 1 unit downwards.

The horizontal asymptote of $y = 2^x$ is y = 0. After the vertical translation, the new asymptote is y = -1.



D EXPONENTIAL MODELS

D.1 MODELING REAL-WORLD SITUATIONS WITH EXPONENTIAL FUNCTIONS

Ex 27: A population of bacteria doubles every second. At time x = 0, there is a single bacterium.

Find the function to model this growth.

$$P(x) = 2^x$$

Answer: Let P(x) be the population of bacteria after x seconds. We have:

$$P(0) = 1 = 2^0$$

$$P(1) = 2 = 2^1$$

$$P(2) = 4 = 2^2$$

. .

$$P(x) = 2^x$$

So, the population after x seconds is $P(x) = 2^x$.

Ex 28: A species of bear is introduced to a large island off Alaska where previously there were no bears. 6 pairs of bears were introduced in 1998. It is expected that the population will increase according to $B(t) = B_0 \times (1.13)^t$ where t is the time, in years, since the introduction.

1. Find B_0 .

2. Find the expected bear population in 2018.

138 bears (round to the nearest integer)

3. Find the expected percentage increase in population from 1998 to 2018.

1050% (round to the nearest ten)

Answer:

- 1. $B_0 = 6 \text{ pairs} = 12 \text{ bears}.$
- 2. 2018 is 20 years after 1998, so t = 20.

$$B(20) = 12 \times (1.13)^{20}$$

$$\approx 12 \times 11.523$$

$$\approx 138.3$$

$$\approx 138 \text{ bears}$$

3. The expected percentage increase is

$$\frac{138.3 - 12}{12} \times 100\% \approx 1050\%$$

Ex 29: Sarah buys a piece of artwork for \$1500 that is expected to appreciate (increase in value) by 8% each year.

1. Determine a model for A_n , the value of the artwork after n years.

$$A_n = 1500 \times (1.08)^n$$

2. Is this an example of exponential growth? Yes

3. Calculate the estimated value of the artwork in 6 years' time.

Answer.

1. Initial value $A_0 = 1500 , annual growth rate r = 8%.

The model is:

$$A_0 = 1500$$

$$A_1 = 1500 \times 1.08$$

$$A_2 = 1500 \times (1.08)^2$$

$$A_3 = 1500 \times (1.08)^3$$

$$\vdots$$

$$A_n = 1500 \times (1.08)^n$$

So,
$$A_n = 1500 \times (1.08)^n$$
.

- 2. Yes, this is an example of exponential growth because the value is multiplied by the same factor (1.08) each year.
- 3. Substitute n = 6:

$$A_6 = 1500 \times (1.08)^6$$

 $\approx 1500 \times 1.586874$
 ≈ 2380

The estimated value in 6 years is \$2 380 (rounded to the nearest integer).

Ex 30: Maxime has an Uncle Scrooge coin worth \$500. Each year, the coin's value increases by 20%.

1. Determine a model for C_n , the value of the coin after n vears.

$$C_n = 500 \times (1.20)^n$$

2. Is this an example of exponential growth? Yes

3. Calculate the estimated value of the coin in 6 years' time.

Answer:

1. Initial value $C_0 = 500 , annual growth rate r = 20%. The model is:

$$C_0 = 500$$

$$C_1 = 500 \times 1.20$$

$$C_2 = 500 \times (1.20)^2$$

$$C_3 = 500 \times (1.20)^3$$

$$\vdots$$

$$C_n = 500 \times (1.20)^n$$

So,
$$C_n = 500 \times (1.20)^n$$
.

- 2. Yes, this is an example of exponential growth because the value is multiplied by the same factor (1.20) each year.
- 3. Substitute n = 6:

$$C_6 = 500 \times (1.20)^6$$

 $\approx 500 \times 2.985984$
 ≈ 1493

The estimated value in 6 years is \$1493 (rounded to the nearest integer).

Ex 31: A certain radioactive substance loses 12% of its mass each year. Initially, the sample weighs 200 g.

1. Determine a model for M_n , the mass (in grams) remaining after n years.

$$M_n = 200 \times (0.88)^n$$

- 2. Is this an example of exponential decay? Yes
- 3. Calculate the mass remaining after 10 years.

[56] g (round to the nearest integer)

Answer:

1. Initial mass $M_0=200$ g, annual loss rate = 12%. The decay factor is R=1-0.12=0.88. The model is:

$$M_n = 200 \times (0.88)^n$$

- 2. Yes, this is an example of exponential decay because the mass is multiplied by the same constant factor (0.88) each year.
- 3. Substitute n = 10:

$$M_{10} = 200 \times (0.88)^{10}$$

 $\approx 200 \times 0.2785$
 ≈ 55.7

So, the mass remaining after 10 years is $\mathbf{56}$ \mathbf{g} (rounded to the nearest integer).

D.2 SOLVING PROBLEMS USING EXPONENTIAL MODELS

Ex 32: The temperature, T, in degrees Celsius (°C), of a cup of coffee t minutes after it is poured is modelled by the function:

$$T(t) = 22 + 70e^{-kt}$$

where k is a positive constant.

- 1. Find the initial temperature of the coffee.
- 2. The temperature of the coffee is 65°C after 5 minutes. Find the value of k.
- 3. Find the temperature of the coffee after 15 minutes.
- 4. Find the rate at which the temperature of the coffee is decreasing at t = 10 minutes.
- 5. State the temperature of the room, giving a reason for your answer.

Answer:

- 1. Initial temperature is at t = 0. $T(0) = 22 + 70e^0 = 22 + 70 = 92^{\circ}C$.
- 2. We are given T(5) = 65.

$$65 = 22 + 70e^{-5k}$$

$$43 = 70e^{-5k}$$

$$\frac{43}{70} = e^{-5k}$$

$$\ln\left(\frac{43}{70}\right) = -5k$$

$$k = -\frac{1}{5}\ln\left(\frac{43}{70}\right) \approx \mathbf{0.0974}$$

3. We use the value of k found in part (b) and set t = 15.

$$T(15) = 22 + 70e^{-0.0974 \times 15}$$

 $\approx 38.2^{\circ}C$

4. The rate of change is the derivative, T'(t).

$$T'(t) = 70 \cdot (-k)e^{-kt}$$
$$= -70ke^{-kt}$$

At t = 10:

$$T'(10) = -70(0.0974)e^{-0.0974 \times 10}$$

 ≈ -2.57

The temperature is decreasing at a rate of $2.57^{\circ}C$ per minute.

5. As $t \to \infty$, the term $e^{-kt} \to 0$. Therefore, $\lim_{t \to \infty} T(t) = 22 + 70(0) = 22$.

The coffee will cool down to the temperature of its surroundings. The temperature of the room is $22^{\circ}C$. This is the horizontal asymptote of the function.

Ex 33: The concentration of a drug in a patient's bloodstream, C, in milligrams per litre (mg/L), is modelled by the function:

$$C(t) = 80(e^{-0.2t} - e^{-1.5t})$$

where t is the time in hours after the drug was administered.

- 1. Find the concentration of the drug in the bloodstream after 2 hours.
- 2. Use your graphing display calculator to find the maximum concentration of the drug and the time at which it occurs.
- 3. Find the rate of change of the drug's concentration at t=4 hours. Interpret the meaning of your answer.
- 4. Determine the long-term concentration of the drug in the bloodstream, justifying your answer.

Answer:

1. Substitute t=2 into the function:

$$C(2) = 80(e^{-0.2\times2} - e^{-1.5\times2})$$
$$= 80(e^{-0.4} - e^{-3})$$
$$\approx 49.6 \text{ mg/L}$$

- 2. By using a graphing display calculator to find the maximum of the function C(t): The maximum concentration is approximately 51 mg/L, which occurs at $t \approx 1.6$ hours.
- 3. The rate of change is the derivative, C'(t).

$$C'(t) = 80(-0.2e^{-0.2t} + 1.5e^{-1.5t})$$

At
$$t = 4$$
:

$$C'(4) = 80(-0.2e^{-0.8} + 1.5e^{-6})$$

 ≈ -6.90

The concentration is decreasing at a rate of $6.90~\rm{mg/L}$ per hour.

4. As $t \to \infty$, both $e^{-0.2t} \to 0$ and $e^{-1.5t} \to 0$.

Therefore,
$$\lim_{t \to \infty} C(t) = 80(0 - 0) = 0$$
.

The long-term concentration is 0 mg/L, meaning the drug is eliminated from the bloodstream.