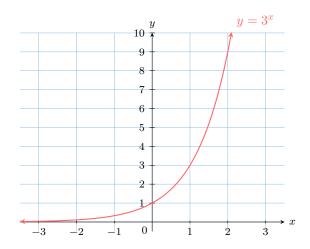
A EXPONENTIAL FUNCTIONS

A.1 READING AND SKETCHING EXPONENTIAL FUNCTIONS

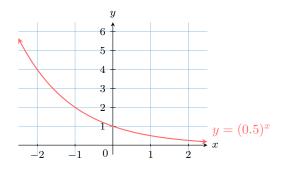
Ex 1:



By reading from the graph of $y=3^x,$ complete the following inequalities with consecutive integers:

2.
$$\leq 3^{0.5} <$$

Ex 2:

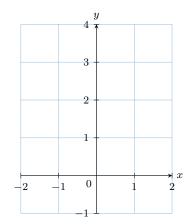


By reading from the graph of $y=(0.5)^x$, complete the following inequalities with consecutive integers:

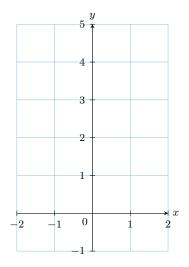
1.
$$\leq (0.5)^{-0.5} < \leq$$

2.
$$\leq (0.5)^{-1.5} < \leq$$

Ex 3: Sketch the graph of the function $f(x) = 2^x$. Use a table of values for integer values of x from -2 to 2 to help you plot key points.



Ex 4: Sketch the graph of the function $f(x) = \left(\frac{1}{2}\right)^x$. Use a table of values for integer values of x from -2 to 2 to help you plot key points.



A.2 EVALUATING EXPONENTIAL FUNCTIONS

Ex 5: For $f(x) = 3^x$, evaluate:

1.
$$f(2) = \Box$$

2.
$$f(0) =$$

3.
$$f(-1) =$$

Ex 6: For $f(x) = 10^x$, evaluate:

1.
$$f(2) =$$

2.
$$f(0) =$$

3.
$$f(-1) =$$

Ex 7: For $f(x) = \left(\frac{1}{2}\right)^x$, evaluate:

1.
$$f(-2) = \Box$$

2.
$$f(-1) =$$

3.
$$f(0) =$$

4.
$$f(1) =$$

B NATURAL EXPONENTIAL FUNCTION e^x

B.1 CALCULATING WITH THE NATURAL EXPONENTIAL FUNCTION

Ex 8: Using your calculator, evaluate the following values of $f(x) = e^x$. Round your answers to 2 decimal places.

- 1. $e^1 \approx$
- 2. $e^2 \approx$
- 3. $e^{-1} \approx \boxed{}$
- 4. $\sqrt{e} \approx$

Ex 9: Simplify the following expressions using the laws of exponents.

- $1. e^x \cdot e^2 = \boxed{}$
- 2. $\frac{e^{3x}}{e^x} =$
- 3. $(e^2)^x =$

Ex 10: Solve the following equations for x without using a calculator.

- 1. $e^x = 1 \implies x = \square$
- $2. e^x = e^5 \implies x = \boxed{}$

 $\Box x = 0$

- $3. \ e^x = -3 \implies \square \ x = -3$
 - □ No solution

B.2 GRAPHING AND PROPERTIES OF THE NATURAL EXPONENTIAL FUNCTION

Ex 11: Based on the properties of the natural exponential function $y = e^x$:

1. What are the coordinates of the y-intercept?

([]; [])

2. What is the equation of the horizontal asymptote?

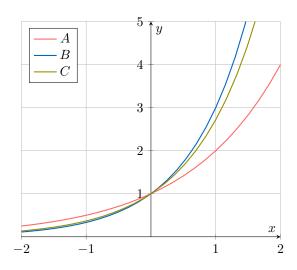
 $y = \Box$

3. Is the function strictly increasing or decreasing?

 \square Increasing

□ Decreasing

Ex 12: The graphs of $y = 2^x$, $y = 3^x$, and $y = e^x$ are plotted below. Identify which curve corresponds to $y = e^x$.



 \square A

The curve representing $y = e^x$ is: \square B

 $\supset C$

Ex 13: Consider the function $g(x) = e^x - 2$.

1. Calculate the y-intercept of the graph of g.

y =

2. Determine the equation of the horizontal asymptote of g.

y =

C TRANSFORMATIONS OF EXPONENTIAL FUNCTIONS

C.1 CALCULATING f(x)

Ex 14: For $f: x \mapsto 3 \cdot 2^x$, find in simplest form:

- 1. f(0) =
- 2. $f(2) = \boxed{}$
- 3. $f(-1) = \boxed{}$

Ex 15: For $f: x \mapsto 5 \cdot e^x$, find in simplest form:

- 1. $f(0) = \Box$
- 2. f(1) =
- 3. $f(\ln 2) = \boxed{}$

Ex 16: For $f: x \mapsto \left(\frac{1}{3}\right)^x + 1$, find in simplest form:

- 1. f(0) =
- 2. f(2) =
- 3. $f(-2) = \boxed{}$

C.2 FINDING f(g(x))

Ex 17: For the function f(x) = x + 1 and $g(x) = 4^x$, find an simplify:

$$(f \circ g)(x) = \boxed{}$$

Ex 18: For the function f(x) = x + 1 and $g(x) = 4^x$, find an simplify:

$$(g \circ f)(x) =$$

Ex 19: For the function f(x) = 3x and $g(x) = e^x$, find and simplify:

$$(f \circ g)(x) = \boxed{}$$

Ex 20: For the function f(x) = 3x and $g(x) = e^x$, find and simplify:

$$(g \circ f)(x) = \boxed{}$$

Ex 21: For the function f(x) = x - 2 and $g(x) = 5^x$, find and simplify:

$$(f \circ g)(x) = \boxed{}$$

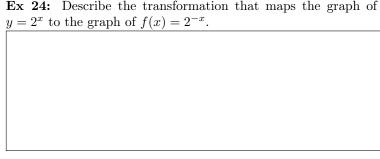
Ex 22: For the function f(x) = x - 2 and $g(x) = 5^x$, find and simplify:

$$(g \circ f)(x) = \boxed{}$$

OF **C.3 DESCRIBING TRANSFORMATIONS EXPONENTIAL GRAPHS**

Ex 23: Describe the sequence of transformations that maps the graph of $y = 2^x$ to the graph of $f(x) = 2^{x+1} + 4$.

Ex 24: Describe the transformation that maps the graph of



Ex 25: Describe the transformation that maps the graph of $y = e^x$ to the graph of $f(x) = e^{2x}$.

d d					
d	d				
d					
	d				

Ex 26: Describe the sequence of transformations that maps the graph of $y = 2^x$ to the graph of $f(x) = 3 \cdot 2^x - 1$.

D EXPONENTIAL MODELS

MODELING REAL-WORLD SITUATIONS WITH **EXPONENTIAL FUNCTIONS**

Ex 27: A population of bacteria doubles every second. At time x = 0, there is a single bacterium.

Find the function to model this growth.

$$P(x) =$$

A species of bear is introduced to a large island off Alaska where previously there were no bears. 6 pairs of bears were introduced in 1998. It is expected that the population will increase according to $B(t) = B_0 \times (1.13)^t$ where t is the time, in years, since the introduction.

1. Find B_0 .

bears

2. Find the expected bear population in 2018.

bears (round to the nearest integer)

3. Find the expected percentage increase in population from 1998 to 2018.

% (round to the nearest ten)

Sarah buys a piece of artwork for \$1500 that is expected to appreciate (increase in value) by 8% each year.

1. Determine a model for A_n , the value of the artwork after n

2. Is this an example of exponential growth? $\Box Yes$	
\square No	
3. Calculate the estimated value of the artwork in 6 years' time.	
\$ (round to the nearest integer)	
Ex 30: Maxime has an Uncle Scrooge coin worth \$500. Each year, the coin's value increases by 20%.	
1. Determine a model for C_n , the value of the coin after n years.	
$C_n =$	
2. Is this an example of exponential growth? $\Box Yes$	
\square No	
3. Calculate the estimated value of the coin in 6 years' time.	
\$ (round to the nearest integer)	
Ex 31: A certain radioactive substance loses 12% of its mass each year. Initially, the sample weighs 200 g. 1. Determine a model for M_n , the mass (in grams) remaining	
after n years.	
$M_n =$	

g (round to the nearest integer)

D.2 SOLVING PROBLEMS USING EXPONENTIAL MODELS

Ex 32: The temperature, T, in degrees Celsius (°C), of a cup of coffee t minutes after it is poured is modelled by the function:

$$T(t) = 22 + 70e^{-kt}$$

where k is a positive constant.

1. Find the initial temperature of the coffee.

2. Is this an example of exponential decay?

3. Calculate the mass remaining after 10 years.

 $\square Yes$

 $\square No$

- 2. The temperature of the coffee is 65°C after 5 minutes. Find the value of k.
- 3. Find the temperature of the coffee after 15 minutes.
- 4. Find the rate at which the temperature of the coffee is decreasing at t=10 minutes.
- 5. State the temperature of the room, giving a reason for your answer.

Ex 33: The concentration of a drug in a patient's bloodstream, C, in milligrams per litre (mg/L), is modelled by the function:

$$C(t) = 80(e^{-0.2t} - e^{-1.5t})$$

where t is the time in hours after the drug was administered.

- 1. Find the concentration of the drug in the bloodstream after 2 hours.
- 2. Use your graphing display calculator to find the maximum concentration of the drug and the time at which it occurs.
- 3. Find the rate of change of the drug's concentration at t=4 hours. Interpret the meaning of your answer.
- 4. Determine the long-term concentration of the drug in the bloodstream, justifying your answer.

