EXPANSION OF ALGEBRAIC EXPRESSIONS

In algebra, expressions can be written in different forms. A factored form represents an expression as a product, like a(b+c). An **expanded form** represents it as a sum of terms, like ab+ac.

Expanding is the algebraic process of converting a factored form into an expanded form. In practice, this means removing the brackets by multiplying the factor outside by each term inside. This is a fundamental skill used for simplifying expressions and solving equations.

A DISTRIBUTIVE LAW 1

Proposition Distributive Law

Multiplication is distributive over addition and subtraction:

• Addition:

$$a (b+c) = ab + ac$$

$$b+c + ac$$

• Subtraction:

$$a(b-c) = ab - ac$$

Ex: Show that $2(\ell + L) = 2\ell + 2L$.

Answer:

$$2 (\ell + L) = 2 \times \ell + 2 \times L$$

$$= 2\ell + 2L$$

So $2(\ell + L) = 2\ell + 2L$.

B DISTRIBUTIVE LAW 2

Proposition Distributive Law 2

Each term in the first bracket multiplies each term in the second bracket. (a+b) (c+d) = ac + ad + bc + bdbbbb+_a +

c

d

+

c

bc

d

+

d

bd

Ex: Expand and simplify (x+4)(2x+2).

c

ac

d

+

Answer:

a

$$(x+4)\cdot(2x+2)=x \times 2x + x \times 2 + 4 \times 2x + 4 \times 2$$

= $2x^2 + 2x + 8x + 8$
= $2x^2 + 10x + 8$

So
$$(x+4)(2x+2) = 2x^2 + 10x + 8$$
.

(a+b)(c+d)

C DIFFERENCE OF TWO SQUARES

Proposition Difference of Two Squares

$$(a - b)(a + b) = a^2 - b^2$$

This identity is called the **difference of two squares**.

Proof

$$(a-b)(a+b) = a(a+b) - b(a+b)$$
 (distributive law)
 $= a^2 + ab - ab - b^2$ (expanding)
 $= a^2 + ab - ab - b^2$
 $= a^2 - b^2$.

Ex: Expand and simplify: (x-3)(x+3).

Answer:

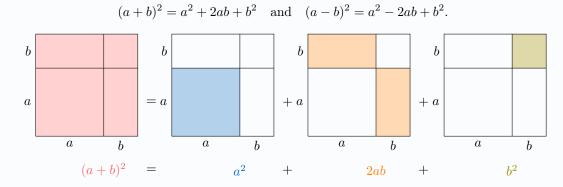
$$(x-3)(x+3) = x^2 - 3^2$$
$$= x^2 - 9.$$

So
$$(x-3)(x+3) = x^2 - 9$$
.

D PERFECT SQUARES EXPANSION

Proposition Perfect Squares Expansion

The square of a sum and the square of a difference can be written as:



Proof

$$(a+b)^2 = (a+b)(a+b)$$
 (definition of a square)
= $a(a+b) + b(a+b)$ (distributive law)
= $a^2 + ab + ab + b^2$ (expanding)
= $a^2 + 2ab + b^2$ (combining like terms).

Similarly,

$$(a-b)^2 = (a-b)(a-b)$$
 (definition of a square)
= $a(a-b) - b(a-b)$ (distributive law)
= $a^2 - ab - ab + b^2$ (expanding)
= $a^2 - 2ab + b^2$ (combining like terms).

Ex: Expand and simplify $(x+2)^2$.

Answer: Using the formula $(a+b)^2 = a^2 + 2ab + b^2$ with a=x and b=2:

$$(x+2)^2 = x^2 + 2 \times x \times 2 + 2^2$$

= $x^2 + 4x + 4$.

So
$$(x+2)^2 = x^2 + 4x + 4$$
.