ELEMENTS OF GEOMETRY

A POINT

Definition Point -

A point shows an exact position in space. We draw a point as a small dot.

•

Definition Point Notation —

We usually name a point with a capital letter, such as A.

A

In mathematics, we imagine that a point has no size or shape. It only marks a position.

Ex: The diagram below shows three points labeled A, B, and C:

C

A • .

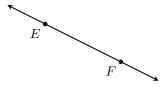
B LINES, SEGMENTS AND RAYS

Definition Line

A line is a straight path that goes on forever in both directions.

\

Definition Line Notation —


• A line can be named with a lowercase letter, written as \overrightarrow{l} .

• A line is named using two points on it, written as \overrightarrow{AB} .

Ex: Name the line shown below:

Answer: The line is \overrightarrow{EF} .

Definition Line Segment _____

A line segment is the part of a line between two endpoints. It has a fixed length.

Definition Line Segment Notation _

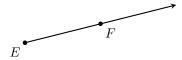
We name a line segment by its endpoints, written as \overline{AB} . We read this as "segment AB".

Ex: Name the segment shown below:

Answer: The segment is \overline{EF} .

Definition Ray

A ray is a part of a line that starts at one endpoint and goes on forever in one direction.



Definition Ray Notation -

We name a ray by its endpoint first and another point on it, written as \overrightarrow{AB} . We read this as "ray AB".

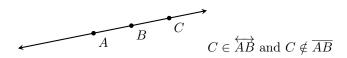
Ex: Name the ray shown below:

Answer: The ray is \overrightarrow{EF} .

Definition Collinear Points

Collinear points are points that all lie on the same straight line.

Ex: The points A, B and C are collinear points.



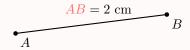
C ELEMENT RELATION

Definition **Element Relation**

The relation is a point of (or "belongs to") is used to show that a point lies on a geometric figure, such as a line or a segment. We write this relation using the symbol \in .

Ex:

In this figure, point C lies on the line through points A and B, so we write $C \in \overrightarrow{AB}$ and say that C is a point of the line \overrightarrow{AB} . However, C does not lie on the segment between A and B, so $C \notin \overline{AB}$.

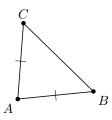

D LENGTH

Definition Length of a Line Segment -

The **length** of a line segment is the distance between its two endpoints, measured in units such as centimeters (cm) or meters (m).

Definition Length Notation -

If \overline{AB} is a segment, its length is denoted by AB (without the bar). In diagrams, we may also write AB for the length of segment AB.



Definition Equal Lengths —

Line segments are **equal in length** if they have the same length. We use **tick marks** on the segments to show that they are equal: segments with the same number of tick marks have the same length.

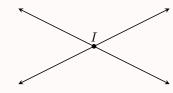
Ex: Identify two segments that have the same length.

Answer: Segments \overline{AB} and \overline{AC} have the same length, as shown by the identical tick marks on each of them. Therefore, AB = AC.

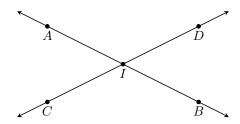
Method Measuring Length

We measure the length of a segment with a ruler. Place one endpoint on the 0 mark, then read the number at the other endpoint: that number is the length of the segment.

Ex: Measure the length of segment \overline{AB} .



Answer: By aligning a ruler with segment \overline{AB} , we measure the length as AB = 4 cm. So the length of segment AB is 4 cm.


E INTERSECTION POINT

Definition Intersection Point -

An intersection point is a point where two or more lines, segments, or rays cross each other.

Ex: Find the intersection point of the lines \overrightarrow{AB} and \overrightarrow{CD} .

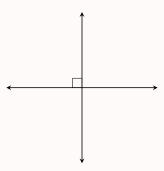
Answer: The intersection point is I.

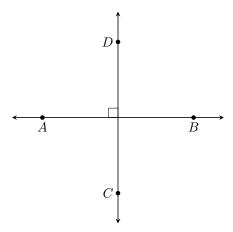
F PARALLEL LINES

Definition Parallel Lines

Two parallel lines are lines that are always the same distance apart and never meet, even if you extend them.

Definition Parallel Line Notation -


On a diagram, parallel lines are shown using matching little arrows on each line.


G PERPENDICULAR LINES

Definition Perpendicular Lines

Two perpendicular lines are lines that intersect at a right angle (90 degrees). We write $\overrightarrow{AB} \perp \overrightarrow{CD}$ to show that line \overrightarrow{AB} is perpendicular to line \overrightarrow{CD} .

Ex: Identify the pair of perpendicular lines in the figure below.

Answer: The lines \overrightarrow{AB} and \overrightarrow{CD} are perpendicular, as they intersect, forming a right angle, indicated by the right-angle mark.

H MIDPOINT AND PERPENDICULAR BISECTOR

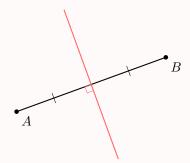
Definition Midpoint of a Line Segment

The **midpoint** of a line segment is a point that lies on the segment and divides it into two segments of equal length. For example, if I is the midpoint of segment \overline{AB} , then $I \in \overline{AB}$ and AI = IB.

Proposition Midpoint Length Property _____

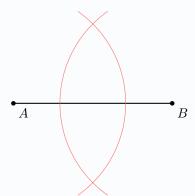
If point I is the midpoint of segment \overline{AB} , then $AB = 2 \times AI$ and $AI = \frac{AB}{2}$.

Proof

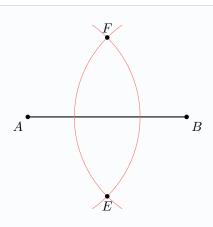

$$AB = AI + IB$$
 (*I* is the midpoint of \overline{AB})
= $AI + AI$
= $2 \times AI$

Thus, $AB = 2 \times AI$. To find AI in terms of AB, we rearrange the equation:

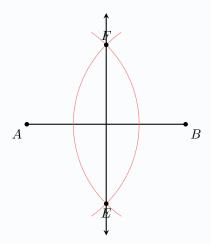
$$AI = \frac{AB}{2}.$$


Definition Perpendicular bisector —

The **perpendicular bisector** of a line segment is the line that passes through the midpoint of the segment and is perpendicular to the segment.



Method Constructing the Perpendicular Bisector of \overline{AB}

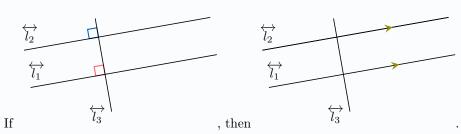

 \bullet Using a compass, construct two arcs with the same radius and with centers at A and B.

• The arcs intersect at points E and F.

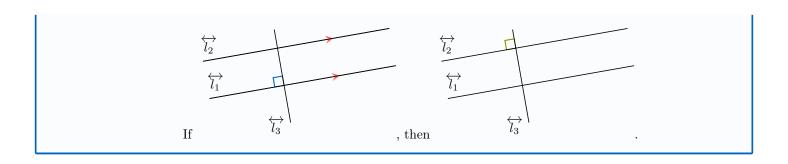
• The perpendicular bisector of \overline{AB} is the line \overleftrightarrow{EF} .

I PROPERTIES OF PARALLEL LINES

Proposition Properties of Parallel Lines ____


These properties help us decide when two lines are parallel or perpendicular.

• If line $\overrightarrow{l_1}$ is parallel to line $\overrightarrow{l_2}$ and line $\overrightarrow{l_2}$ is parallel to line $\overrightarrow{l_3}$, then line $\overrightarrow{l_1}$ is parallel to line $\overrightarrow{l_3}$.


 t_1 , then

• If line $\overrightarrow{l_1}$ is perpendicular to line $\overrightarrow{l_3}$ and line $\overrightarrow{l_2}$ is perpendicular to line $\overrightarrow{l_3}$, then line $\overrightarrow{l_1}$ is parallel to line $\overrightarrow{l_2}$.

• If line $\overrightarrow{l_1}$ is parallel to line $\overrightarrow{l_2}$ and line $\overrightarrow{l_1}$ is perpendicular to line $\overrightarrow{l_3}$, then line $\overrightarrow{l_2}$ is perpendicular to line $\overrightarrow{l_3}$.

(P)

