ELEMENTS OF GEOMETRY

A POINT

A.1 COUNTING NUMBER OF POINTS

Ex 1: Count the points in the figure.

 $\bullet B$

 $A\, \bullet$

 $\overset{ullet}{C}$

3 points

Answer: The figure has 3 points: A, B, and C.

Ex 2: Count the points in the figure.

 $\bullet F$

 $E \bullet$

2 points

Answer: The figure has 2 points: E and F.

Ex 3: Count the points in the figure.

G

 $E \bullet$

 $\bullet F$

 $\overset{ullet}{H}$

4 points

Answer: The figure has 4 points: E, F, G, and H.

Ex 4: Count the points in the figure.

I ullet

1 point

Answer: The figure has 1 point: I.

A.2 DRAWING POINTS

Ex 5: Using a pencil, draw a point and label it A.

Answer.

 $A \bullet$

The point is labeled A.

Ex 6: Using a pencil, draw two points and label them A and B.

Answer:

 $\bullet B$

 $A \bullet$

The two points are labeled A and B.

Ex 7: Using a pencil, draw three points and label them A, B, and C.

Answer:

 $\bullet B$

 $A \bullet$

 $\overset{\bullet}{C}$

The three points are labeled A, B, and C.

B LINES, SEGMENTS AND RAYS

B.1 RECOGNIZING

MCQ 8: Which term describes this figure?

Choose one answer:

⊠ Line

☐ Line segment

□ Ray

Answer: A line extends infinitely in both directions. This figure is a line.

MCQ 9: Which term describes this figure?

•

Choose one answer:

 \square Line

☐ Line segment

□ Ray

Answer: A ray starts at one point and extends infinitely in one direction. This figure is a ray.

MCQ 10: Which term describes this figure?

Choose one answer:

Answer: A line segment connects two points with a definite length.

C E

Choose one answer:

 $\Box \overline{CE}$

 $\Box \overleftrightarrow{CE}$

 $\boxtimes \overrightarrow{CE}$

 $\square \overrightarrow{EC}$

Answer: The correct name is \overrightarrow{CE} because the figure shows a ray starting at point C and extending infinitely through point E (indicated by the arrow).

MCQ 15: Name the ray represented in this figure:

Choose one answer:

 \square Line

 \Box Line

□ Ray

□ Line segment

This figure is a line segment.

MCQ 11: Which term describes this figure?

☐ Line segment

⊠ Ray

Answer: A ray starts at one point and extends infinitely in one direction. This figure is a ray.

B.2 NAMING

MCQ 12: Name the line represented in this figure:

Choose one answer:

 $\Box \overline{EF}$

 $\bowtie \overrightarrow{EF}$

 $\square \overrightarrow{EF}$

Answer: The correct name is \overrightarrow{EF} because the figure shows an infinitely straight path extending in both directions through points E and F.

MCQ 13: Name the line represented in this figure:

Choose one answer:

 $\Box \overline{CE}$

 $\bowtie \overrightarrow{CE}$

 $\Box \overrightarrow{CE}$

Answer: The correct name is \overrightarrow{CE} because the arrows at both ends indicate the line continues infinitely in both directions through points C and E.

MCQ 14: Name the ray represented in this figure:

Choose one answer:

 $\Box \ \overline{EC}$

 $\Box \overleftrightarrow{EC}$

 $\Box \overrightarrow{CE}$

 $\boxtimes \overrightarrow{EC}$

Answer: The correct name is \overrightarrow{EC} because the figure shows a ray starting at point E and extending infinitely through point C.

MCQ 16: Name the segment represented in this figure:

Choose one answer:

 $\boxtimes \overline{EC}$

 $\Box \overleftrightarrow{EC}$

 $\square \overrightarrow{EC}$

Answer: The correct name is \overline{EC} because the figure shows only the finite portion of the line between points E and C.

MCQ 17: Name the line represented in this figure:

Choose all correct answers:

 $\bowtie \overleftrightarrow{AB}$

 $\bowtie \overrightarrow{AC}$

 $\boxtimes \overrightarrow{BC}$

Answer: All answers are correct: \overrightarrow{AB} , \overrightarrow{AC} , and \overrightarrow{BC} because they all represent the same infinite straight line passing through all three points.

B.3 DRAWING LINES, SEGMENTS AND RAYS

Ex 18: Using a ruler and pencil, draw a straight line passing through points A and B. Label both points clearly.

Answer:

The straight line passes through points A and B, extends infinitely in both directions with arrows, and both points are labeled clearly.

Ex 19: Using a ruler and pencil, draw a line segment passing through points A and B. Label both points clearly.

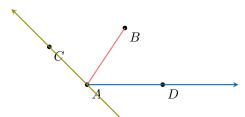
Answer:

The line segment passes through points A and B, starts at point A, ends at point B, and both points are labeled clearly.

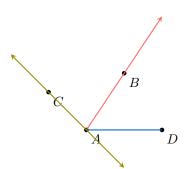
Ex 20: Using a ruler and pencil, draw a ray passing through points A and B. Label both points clearly.

Answer:

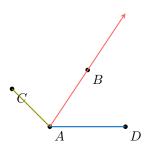
The ray starts at point A, passes through point B, extends infinitely in one direction with an arrow, and both points are labeled clearly.


B.4 CHECKING A CONSTRUCTION PROGRAM

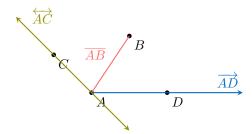
MCQ 21: A teacher gives these construction steps:


- 1. Draw points A, B, C, and D
- 2. Draw segment \overline{AB}
- 3. Draw line \overrightarrow{AC}
- 4. Draw ray \overrightarrow{AD}

Which student followed the instructions correctly? **Select the** correct answer:


□ Hugo

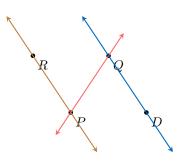
 \square Louis



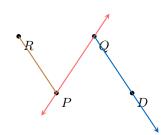
□ Vincent

Answer: Hugo's construction is correct because:

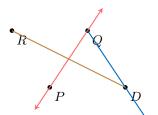
- The line \overrightarrow{AC} extends infinitely in both directions through A and C



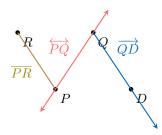
MCQ 22: A teacher gives these construction steps:


- 1. Draw points P, Q, R, and D
- 2. Draw segment \overline{PR}
- 3. Draw line \overrightarrow{PQ}
- 4. Draw ray \overrightarrow{QD}

Which student followed the instructions correctly? **Select the correct answer:**


☐ Hugo

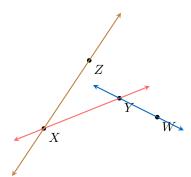
□ Louis



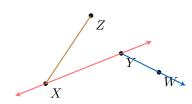
□ Vincent

Answer: Louis's construction is correct because:

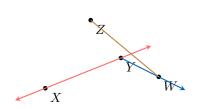
- • The segment \overline{PR} is correctly drawn between points P and R



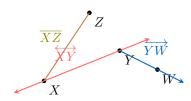
MCQ 23: A teacher gives these construction steps:


- 1. Draw points X, Y, Z, and W
- 2. Draw segment \overline{XZ}
- 3. Draw line \overrightarrow{XY}
- 4. Draw ray \overrightarrow{YW}

Which student followed the instructions correctly? **Select the correct answer:**

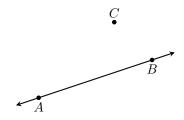

☐ Hugo

□ Louis



□ Vincent

Answer: Louis's construction is correct because:


- • The segment \overline{XZ} is correctly drawn between points X and Z
- The line \overrightarrow{XY} extends infinitely in both directions through X and Y
- The ray \overrightarrow{YW} starts at point Y and extends infinitely through W

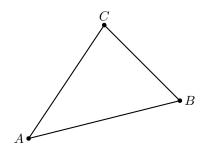
B.5 BUILDING GEOMETRIC FIGURES

Ex 24: Using a ruler and pencil, draw three points A, B, and C, and the straight line \overrightarrow{AB} .

Answer:

The straight line \overrightarrow{AB} passes through points A and B, extends infinitely in both directions with arrows, and all points are labeled clearly.

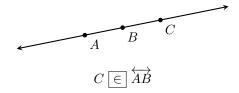
Ex 25: Using a ruler and pencil, draw three points A, B, and C, and the line segment \overline{AC} .


Answer:

The line segment \overline{AC} has endpoints at points A and C, is drawn straight with a ruler, and all points are labeled clearly.

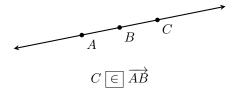
Ex 26: Using a ruler and pencil, draw three points A, B, and C, and the line segments \overline{AB} , \overline{BC} , and \overline{CA} .

Answer:

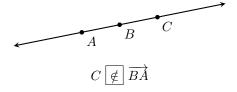


The line segments \overline{AB} , \overline{BC} , and \overline{CA} form a triangle with endpoints at points A, B, and C, are drawn straight with a ruler, and all points are labeled clearly.

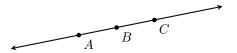
C ELEMENT RELATION


C.1 IDENTIFYING POINTS ON GEOMETRIC FIGURES

Ex 27: Does point C lie on the line through points A and B?

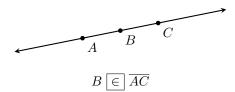

Answer: Point C lies on the line through points A and B, denoted **Ex 33:** Does point E lie on square ABCD? AB. Therefore, $C \in AB$.

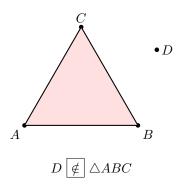
Ex 28: Does point C lie on the ray from A through B?


Answer: Point C lies on the ray from A through B, denoted AB, because it is on the line extending from A through B and beyond. Therefore, $C \in \overline{A}B$.

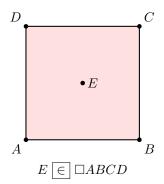
Ex 29: Does point C lie on the ray from B through A?

Answer: Point C does not lie on the ray from B through A, denoted BA, because C is positioned beyond B in the opposite direction from A. Therefore, $C \notin \overrightarrow{BA}$.


Ex 30: Does point C lie on the line segment between B and A?


Answer: Point C does not lie on the line segment between B and A, denoted \overline{BA} , because C is beyond B and not between B and A. Therefore, $C \notin \overline{BA}$.

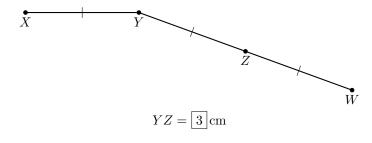
Ex 31: Does point B lie on the line segment between A and C?



Answer: Point B lies on the line segment between A and C, denoted \overline{AC} , because B is positioned between A and C. Therefore, $B \in \overline{AC}$.

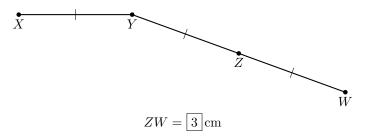
Ex 32: Does point D lie on triangle ABC?

Answer: Point D does not lie on triangle ABC, denoted $\triangle ABC$, because it is outside the triangle. Therefore, $D \notin \triangle ABC$.

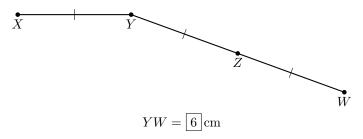


Answer: Point E lies on square ABCD, denoted $\Box ABCD$, because it is inside the square. Therefore, $E \in \Box ABCD$.

D LENGTH


D.1 USING TICK MARKS TO CALCULATE LENGTHS

Ex 34: The segment \overline{XY} measures 3 cm. Use the tick marks to find the length of segment \overline{YZ} .


Answer: The tick marks show that segments \overline{XY} and \overline{YZ} are equal in length. Since \overline{XY} measures 3 cm, \overline{YZ} also measures 3 cm.

Ex 35: The segment \overline{XY} measures 3 cm. Use the tick marks to find the length of segment \overline{ZW} .

Answer: The tick marks show that segments \overline{XY} and \overline{ZW} are equal in length. Since \overline{XY} measures 3 cm, \overline{ZW} also measures 3 cm.

Ex 36: The segment \overline{XY} measures 3 cm. Use the tick marks to find the length of segment \overline{YW} .

Answer: The tick marks show that segments \overline{XY} , \overline{YZ} , and \overline{ZW} are equal in length. Since \overline{XY} measures 3 cm, both \overline{YZ} and \overline{ZW} also measure 3 cm each. Segment \overline{YW} stretches from Y to W, covering both \overline{YZ} and \overline{ZW} . Therefore, the length of \overline{YW} is:

$$YW = YZ + ZW$$
$$= XY + XY$$
$$= 3 cm + 3 cm$$
$$= 6 cm.$$

D.2 CALCULATE LENGTHS USING A MIDPOINT

Ex 37: The segment \overline{AI} measures 3 cm. Use the tick marks to find the length of segment \overline{AB} .

$$\begin{array}{c|cccc}
A & I & B \\
AB = \boxed{6} \text{ cm}
\end{array}$$

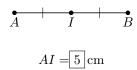
Answer: The tick marks show that segments \overline{AI} and \overline{IB} are equal in length. Since \overline{AI} measures 3 cm, \overline{IB} also measures 3 cm. The length of \overline{AB} is:

$$AB = AI + IB$$
$$= AI + AI$$
$$= 3 cm + 3 cm$$
$$= 6 cm.$$

Ex 38: The segment \overline{IB} measures 10 cm. Use the tick marks to find the length of segment \overline{AB} .

$$AB = \boxed{20} \text{ cm}$$

Answer: The tick marks show that segments \overline{AI} and \overline{IB} are equal in length. Since \overline{IB} measures 10 cm, \overline{AI} also measures 10 cm. The length of \overline{AB} is:


$$AB = AI + IB$$

$$= IB + IB$$

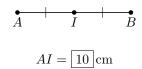
$$= 10 \text{ cm} + 10 \text{ cm}$$

$$= 20 \text{ cm}.$$

Ex 39: The segment \overline{AB} measures 10 cm. Use the tick marks to find the length of segment \overline{AI} .

Answer: The tick marks show that segments \overline{AI} and \overline{IB} are equal in length. Since \overline{AB} measures 10 cm and is divided into two equal segments by point I, the length of \overline{AI} is half of \overline{AB} :

$$AB = AI + IB$$


$$10 \text{ cm} = AI + AI$$

$$10 \text{ cm} = 2 \times AI$$

$$AI = 10 \text{ cm} \div 2$$

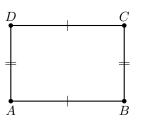
$$= 5 \text{ cm}.$$

Ex 40: The segment \overline{AB} measures 20 cm. Use the tick marks to find the length of segment \overline{AI} .

Answer: The tick marks show that segments \overline{AI} and \overline{IB} are equal in length. Since \overline{AB} measures 20 cm and is divided into two equal segments by point I, the length of \overline{AI} is half of \overline{AB} :

$$AB = AI + IB$$

$$20 \text{ cm} = AI + AI$$

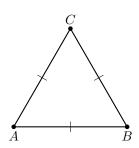

$$20 \text{ cm} = 2 \times AI$$

$$AI = 20 \text{ cm} \div 2$$

$$= 10 \text{ cm}.$$

D.3 USING TICK MARKS TO FIND PERIMETER

Ex 41: The segment \overline{AB} measures 3 cm and segment \overline{BC} measures 2 cm. Use the tick marks to find the perimeter of rectangle ABCD.

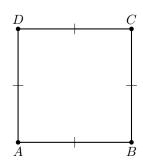

Perimeter of the rectangle ABCD = |10| cm

Answer: The tick marks show that segments \overline{AB} and \overline{CD} are equal in length, and segments \overline{BC} and \overline{DA} are equal in length. Since \overline{AB} measures 3 cm, \overline{CD} also measures 3 cm. Since \overline{BC} measures 2 cm, \overline{DA} also measures 2 cm. The perimeter of rectangle ABCD is the sum of all its sides:

Perimeter =
$$AB + BC + CD + DA$$

= $3 \text{ cm} + 2 \text{ cm} + 3 \text{ cm} + 2 \text{ cm}$
= 10 cm .

Ex 42: The segment \overline{AB} measures 3 cm. Use the tick marks to find the perimeter of triangle ABC.



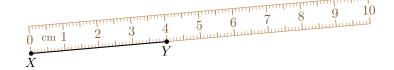
Perimeter of $\triangle ABC = 9$ cm

Answer: The tick marks show that segments \overline{AB} , \overline{BC} , and \overline{CA} are equal in length. Since \overline{AB} measures 3 cm, \overline{BC} and \overline{CA} also measure 3 cm each. The perimeter of triangle ABC is the sum of all its sides:

Perimeter =
$$AB + BC + CA$$

= $3 \text{ cm} + 3 \text{ cm} + 3 \text{ cm}$
= 9 cm .

Ex 43: The segment \overline{AB} measures 3 cm. Use the tick marks to find the perimeter of square ABCD.

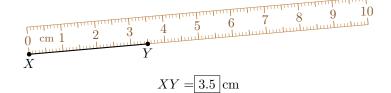

Perimeter of
$$\Box ABCD = \boxed{12}$$
 cm

Answer: The tick marks show that segments \overline{AB} , \overline{BC} , \overline{CD} , and \overline{DA} are equal in length. Since \overline{AB} measures 3 cm, \overline{BC} , \overline{CD} , and \overline{DA} also measure 3 cm each. The perimeter of square ABCD is the sum of all its sides:

Perimeter =
$$AB + BC + CD + DA$$

= $3 \text{ cm} + 3 \text{ cm} + 3 \text{ cm} + 3 \text{ cm}$
= 12 cm .

D.4 MEASURING WITH A RULER


Ex 44: Measure the length of segment \overline{XY} using the ruler shown.

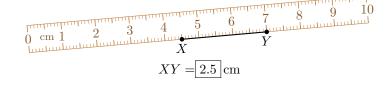
$$XY = \boxed{4}$$
 cm

Answer: By aligning the ruler's zero mark with point X, segment \overline{XY} measures XY = 4 cm.

Ex 45: Measure the length of segment \overline{XY} using the ruler shown.

Answer: By aligning the ruler's zero mark with point X, segment \overline{XY} measures $XY = 3.5 \, \text{cm}$.

Ex 46: Measure the length of segment \overline{XY} using the ruler shown.

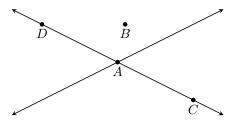


$$XY = \boxed{5}$$
 cm

Answer: To measure segment \overline{XY} , notice that point X is at the 1 cm mark and point Y is at the 6 cm mark on the ruler. The length of the segment is the distance between these points, so we subtract the starting mark from the ending mark:

$$XY = 6 \,\mathrm{cm} - 1 \,\mathrm{cm}$$
$$= 5 \,\mathrm{cm}.$$

Ex 47: Measure the length of segment \overline{XY} using the ruler shown.


Answer: To measure segment \overline{XY} , notice that point X is at the 4.5 cm mark and point Y is at the 7 cm mark on the ruler. The length of the segment is the distance between these points, so we subtract the starting mark from the ending mark:

$$XY = 7 \,\mathrm{cm} - 4.5 \,\mathrm{cm}$$
$$= 2.5 \,\mathrm{cm}.$$

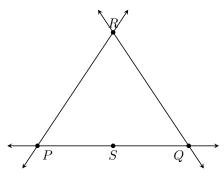
E INTERSECTION POINT

E.1 PICKING THE INTERSECTION POINTS

MCQ 48: Pick the point where the lines intersect.

Choose one point:

 $\boxtimes A$


 \square B

 \square C

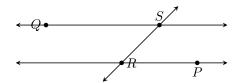
 \square D

Answer: The lines intersect at the point labeled A.

MCQ 49: Pick the points where the lines intersect.

Choose all correct points:

 $\boxtimes P$


 $\boxtimes Q$

 $\boxtimes R$

 \square S

Answer: The lines intersect at the points labeled P, Q, and R.

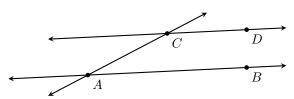
MCQ 50: Pick the points where the lines intersect.

Choose all correct points:

 $\square P$

 $\square Q$

 $\boxtimes R$

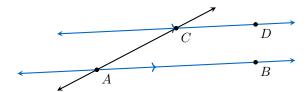

 $\boxtimes S$

Answer: The lines intersect at the points labeled R and S.

F PARALLEL LINES

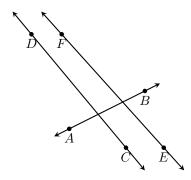
F.1 IDENTIFYING PARALLEL LINES

MCQ 51:


Choose the true statement:

 $\square \overleftrightarrow{AB}$ is parallel to \overleftrightarrow{AC} .

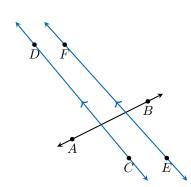
 $\square \overleftrightarrow{CD}$ is parallel to \overleftrightarrow{AC} .


 $\boxtimes \overrightarrow{CD}$ is parallel to \overrightarrow{AB} .

Answer:

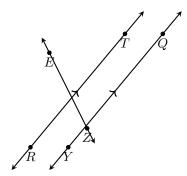
Lines \overrightarrow{CD} and \overrightarrow{AB} go in the same direction, so they are parallel.

MCQ 52:


Choose the true statement:

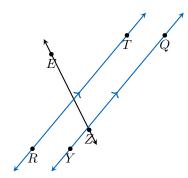
 $\square \overrightarrow{AB}$ is parallel to \overrightarrow{DC} .

 $\boxtimes \overrightarrow{DC}$ is parallel to \overrightarrow{FE} .


 $\square \overleftrightarrow{AB}$ is parallel to \overleftrightarrow{FE} .

Answer:

Lines \overrightarrow{DC} and \overrightarrow{FE} go in the same direction, so they are parallel.


MCQ 53:

Choose the true statement:

- $\square \overleftrightarrow{ZE}$ is parallel to \overrightarrow{RT} .
- $\square \overleftrightarrow{ZE}$ is parallel to \overleftrightarrow{YQ} .
- $\boxtimes \overrightarrow{RT}$ is parallel to \overrightarrow{YQ} .

Answer:

Lines \overrightarrow{RT} and \overrightarrow{YQ} go in the same direction, so they are parallel.

F.2 COUNTING POSSIBLE LINES

MCQ 54: Can you find a line that passes through points A and B? How many such lines are possible?

- \Box 0
- $\boxtimes 1$
- □ Infinite

Answer: Only one line can pass through two points.

MCQ 55: Can you find a line that passes through points A, B, and C together? How many such lines are possible?

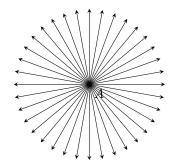
 $\bullet B$

 $A \bullet$

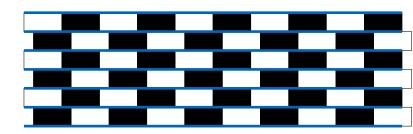
- $\boxtimes 0$
- \Box 1
- \square Infinite

Answer: No line can pass through three points that are not in a straight line.

 $\bullet B$


 $A \bullet$

MCQ 56: Can you find a line that passes through point *A*? How many such lines are possible?

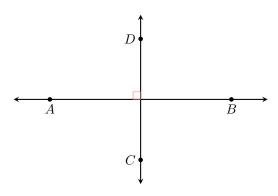


- \Box 0
- □ 1
- \square Infinite

Answer: Infinitely many different lines can pass through one point because they can go in any direction.

MCQ 57: Are the blue thick lines parallel?

⊠ Yes

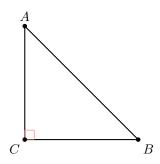

□ No

Answer: The thick lines are parallel, but they look different because of the rectangles. This is the famous "Café wall illusion," where parallel lines seem not parallel.

G PERPENDICULAR LINES

G.1 IDENTIFYING PERPENDICULAR LINES

MCQ 58:

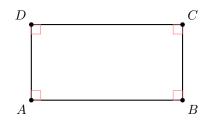


Choose the true statement:

- $\square \ \overrightarrow{CD}$ is parallel to \overrightarrow{AB} .
- $\square \overleftrightarrow{AB}$ is parallel to \overrightarrow{CD} .
- $\boxtimes \overrightarrow{CD}$ is perpendicular to \overrightarrow{AB} .

Answer: \overrightarrow{CD} is perpendicular to \overrightarrow{AB} , as indicated by the right-angle mark at their intersection, showing they form a 90-degree angle.

MCQ 59:

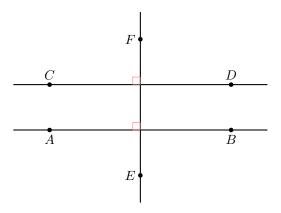


Choose the true statement:

- $\square \overleftrightarrow{AB}$ is perpendicular to \overleftrightarrow{AC} .
- $\square \overleftrightarrow{AB}$ is perpendicular to \overleftrightarrow{BC} .
- $\boxtimes \overrightarrow{AC}$ is perpendicular to \overrightarrow{BC} .

Answer: \overrightarrow{AC} is perpendicular to \overrightarrow{BC} , as indicated by the right-angle mark at vertex C, showing they form a 90-degree angle in the right triangle ABC.

MCQ 60:


Choose all true statements:

- $\boxtimes \overrightarrow{AB}$ is perpendicular to \overrightarrow{AD} .
- $\boxtimes \overrightarrow{AB}$ is perpendicular to \overrightarrow{BC} .
- $\boxtimes \overrightarrow{BC}$ is perpendicular to \overrightarrow{CD} .

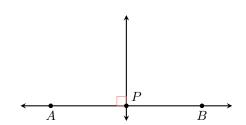
Answer: All statements are true. In rectangle ABCD, all angles are 90 degrees, so adjacent sides are perpendicular:

- \overrightarrow{AB} is perpendicular to \overrightarrow{AD} , as shown by the right-angle mark at vertex A.
- \overrightarrow{AB} is perpendicular to \overrightarrow{BC} , as shown by the right-angle mark at vertex B.
- \overrightarrow{BC} is perpendicular to \overrightarrow{CD} , as shown by the right-angle mark at vertex C.

MCQ 61:

Choose the true statements:

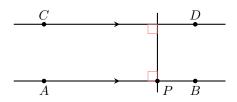
- $\square \overleftrightarrow{CD}$ is perpendicular to \overleftrightarrow{AB} .
- $\boxtimes \overleftrightarrow{EF}$ is perpendicular to \overleftrightarrow{CD} .
- $\boxtimes \overrightarrow{EF}$ is perpendicular to \overrightarrow{AB} .


Answer:

- \overrightarrow{EF} is perpendicular to \overrightarrow{CD} , as indicated by the right-angle mark at their intersection.
- \overrightarrow{EF} is perpendicular to \overrightarrow{AB} , as indicated by the right-angle mark at their intersection.

G.2 BUILDING GEOMETRIC FIGURES

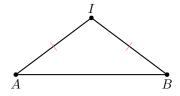
Ex 62: Using a ruler, pencil, and set square, draw line \overrightarrow{AB} and a perpendicular line through a point P on \overrightarrow{AB} .


Answer:

The line \overrightarrow{AB} is a straight line passing through points A and B, extending infinitely in both directions. Point P is marked on \overrightarrow{AB} , and a perpendicular line is drawn through P using a set square, forming a right angle with \overrightarrow{AB} , as indicated by the right-angle mark.

Ex 63: Using a ruler, pencil, and set square, draw two parallel lines \overrightarrow{AB} and \overrightarrow{CD} , and a line perpendicular to \overrightarrow{AB} through a point P on \overrightarrow{AB} .

Answer:

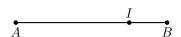


The lines \overrightarrow{AB} and \overrightarrow{CD} are drawn parallel, with arrows indicating they extend infinitely and matching arrowheads showing parallelism. Point P is marked on \overrightarrow{AB} , and a perpendicular line is drawn through P using a set square, forming a right angle with \overrightarrow{AB} , as indicated by the right-angle mark. Since \overrightarrow{AB} and \overrightarrow{CD} are parallel, the perpendicular line through P is also perpendicular to \overrightarrow{CD} , as shown by the second right-angle mark.

H MIDPOINT AND PERPENDICULAR BISECTOR

H.1 IDENTIFYING MIDPOINTS AND PERPENDICULAR BISECTORS

MCQ 64: Point I is the midpoint of segment \overline{AB} .

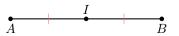


Is the statement true or false?

☐ True

Answer: The statement is false. For point I to be the midpoint of segment \overline{AB} , it must lie on the segment \overline{AB} and divide it into two equal segments \overline{AI} and \overline{IB} . In the diagram, point I is not on the straight line segment \overline{AB} , so it cannot be the midpoint.

MCQ 65: Point I is the midpoint of segment \overline{AB} .

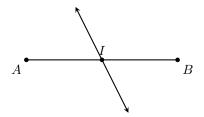

Is the statement true or false?

 \square True

⊠ False

Answer: The statement is false. For point I to be the midpoint of segment \overline{AB} , it must lie on the segment and divide it into two equal segments \overline{AI} and \overline{IB} . In the diagram, point I is on \overline{AB} , but it is closer to B than to A, so the lengths of \overline{AI} and \overline{IB} are not equal. Therefore, I is not the midpoint.

MCQ 66: Point I is the midpoint of segment \overline{AB} .

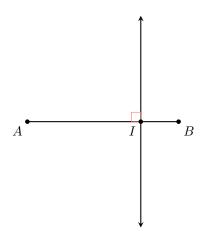

Is the statement true or false?

⊠ True

□ False

Answer: The statement is true. For point I to be the midpoint of segment \overline{AB} , it must lie on the segment and divide it into two equal segments \overline{AI} and \overline{IB} . In the diagram, point I is on \overline{AB} , and the equal segment marks indicate that \overline{AI} and \overline{IB} have the same length. Therefore, I is the midpoint.

 $\underline{\mathbf{MCQ}}$ 67: Line \overrightarrow{EF} is the perpendicular bisector of segment \overline{AB} .

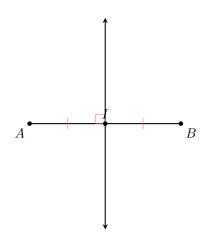


Is the statement true or false?

□ True

Answer: The statement is false. A perpendicular bisector of segment \overline{AB} must be perpendicular to \overline{AB} and pass through its midpoint. In the diagram, \overline{EF} passes through the midpoint I of \overline{AB} , but it is not perpendicular to \overline{AB} , as the angle at I is not a right angle. Therefore, \overline{EF} is not the perpendicular bisector.

MCQ 68: Line \overrightarrow{EF} is the perpendicular bisector of segment



Is the statement true or false?

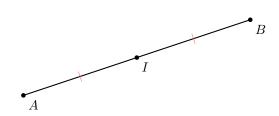
□ True

Answer: The statement is false. A perpendicular bisector of segment \overline{AB} must be perpendicular to \overline{AB} and pass through its midpoint. In the diagram, \overline{EF} is perpendicular to \overline{AB} , as shown by the right-angle mark, but it passes through point I, which is not the midpoint of \overline{AB} . Therefore, \overline{EF} is not the perpendicular bisector.

MCQ 69: Line \overrightarrow{EF} is the perpendicular bisector of segment \overline{AB} .

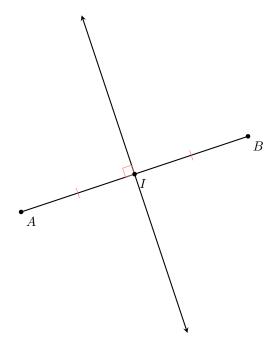
Is the statement true or false?

⊠ True


□ False

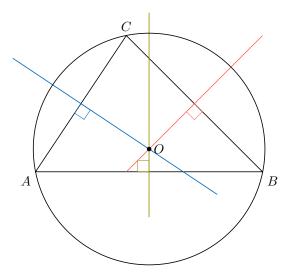
Answer: The statement is true. A perpendicular bisector of segment \overline{AB} must be perpendicular to \overline{AB} and pass through its midpoint. In the diagram, \overline{EF} is perpendicular to \overline{AB} , as shown by the right-angle mark, and it passes through point I, which is the midpoint of \overline{AB} , as indicated by the equal segment marks showing $\overline{AI} = \overline{IB}$. Therefore, \overline{EF} is the perpendicular bisector.

H.2 BUILDING GEOMETRIC FIGURES


Ex 70: Using a ruler and pencil, draw segment \overline{AB} and its midpoint I.

Answer:

Ex 71: Using a ruler and pencil, draw segment \overline{AB} , its midpoint I, and the perpendicular bisector of \overline{AB} .


Answer:

Ex 72: Using a ruler, compass, and pencil, draw triangle ABC and construct the perpendicular bisectors of its three sides \overline{AB} , \overline{BC} , and \overline{CA} following the method for constructing a perpendicular bisector. Observe where the perpendicular bisectors intersect.

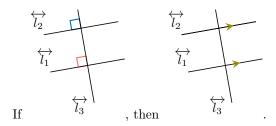
Answer:

12

The triangle ABC is drawn with vertices A, B, and C. The perpendicular bisector of \overline{AB} is constructed by drawing arcs of equal radius from A and B intersecting at two points, and drawing the line through them. Similarly, the perpendicular bisectors of \overline{BC} and \overline{CA} are constructed. The three perpendicular bisectors intersect at a single point O, the circumcenter. A circle centered at O with radius equal to the distance from O to A (or B or C) is drawn, passing through all three vertices A, B, and C, forming the circumcircle of the triangle.

I PROPERTIES OF PARALLEL LINES

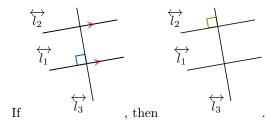
I.1 INVESTIGATING LINE RELATIONSHIPS


MCQ 73: Given that $\overrightarrow{l_1}$ is perpendicular to $\overrightarrow{l_3}$ and $\overrightarrow{l_2}$ is perpendicular to $\overrightarrow{l_3}$, what is the relationship between $\overrightarrow{l_1}$ and $\overrightarrow{l_2}$?

□ Parallel

 \square Perpendicular

Answer:

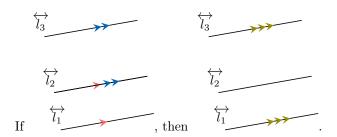

 $\overrightarrow{l_1}$ and $\overrightarrow{l_2}$ are parallel. By the geometric property, if two lines are each perpendicular to the same line, they are parallel. The diagram shows $\overrightarrow{l_1}$ perpendicular to $\overrightarrow{l_3}$ (right-angle mark at their intersection) and $\overrightarrow{l_2}$ perpendicular to $\overrightarrow{l_3}$ (right-angle mark at their intersection). Thus, $\overrightarrow{l_1}$ and $\overrightarrow{l_2}$ are parallel, as shown by their matching arrowheads.

MCQ 74: Given that $\overrightarrow{l_1}$ is perpendicular to $\overrightarrow{l_3}$ and $\overrightarrow{l_1}$ is parallel to $\overrightarrow{l_2}$, what is the relationship between $\overrightarrow{l_2}$ and $\overrightarrow{l_3}$?

□ Perpendicular

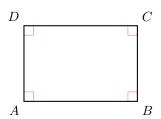
□ Parallel

Answer:


 $\overrightarrow{l_2}$ is perpendicular to $\overrightarrow{l_3}$. By the geometric property, if $\overrightarrow{l_1}$ is perpendicular to $\overrightarrow{l_3}$ and $\overrightarrow{l_1}$ is parallel to $\overrightarrow{l_2}$, then $\overrightarrow{l_2}$ must also be perpendicular to $\overrightarrow{l_3}$. In the first diagram, $\overrightarrow{l_1}$ is perpendicular to $\overrightarrow{l_3}$ (right-angle mark at their intersection), and $\overrightarrow{l_1}$ is parallel to $\overrightarrow{l_2}$. The second diagram confirms that $\overrightarrow{l_2}$ is perpendicular to $\overrightarrow{l_3}$ (right-angle mark at their intersection), and the matching arrowheads show that $\overrightarrow{l_1}$ and $\overrightarrow{l_2}$ are parallel.

MCQ 75: Given that $\overrightarrow{l_1}$ is parallel to $\overrightarrow{l_2}$ and $\overrightarrow{l_2}$ is parallel to $\overrightarrow{l_3}$, what is the relationship between $\overrightarrow{l_1}$ and $\overrightarrow{l_3}$?

□ Parallel


☐ Perpendicular

Answer:

 $\overrightarrow{l_1}$ and $\overrightarrow{l_3}$ are parallel. By the geometric property of parallel lines, if $\overrightarrow{l_1}$ is parallel to $\overrightarrow{l_2}$ and $\overrightarrow{l_2}$ is parallel to $\overrightarrow{l_3}$, then $\overrightarrow{l_1}$ is parallel to $\overrightarrow{l_3}$. In the first diagram, $\overrightarrow{l_1} \parallel \overrightarrow{l_2}$ (matching arrowheads) and $\overrightarrow{l_2} \parallel \overrightarrow{l_3}$ (matching arrowheads). The second diagram confirms that $\overrightarrow{l_1} \parallel \overrightarrow{l_3}$, as shown by their matching arrowheads.

MCQ 76:

Which student correctly explains why \overrightarrow{AB} and \overrightarrow{DC} are parallel in rectangle ABCD?

 \square Su: "I see that \overrightarrow{AB} and \overrightarrow{DC} are parallel."

 \boxtimes Louis: "Since \overrightarrow{AB} and \overrightarrow{AD} are perpendicular and \overrightarrow{DC} and \overrightarrow{AD} are perpendicular, \overrightarrow{AB} and \overrightarrow{DC} are parallel."

 \square Hugo: "Since \overrightarrow{AB} and \overrightarrow{BC} are parallel and \overrightarrow{DC} and \overrightarrow{DA} are parallel, \overrightarrow{AB} and \overrightarrow{DC} are parallel."

Answer: Louis provides the correct explanation. In rectangle ABCD, as shown in the diagram, \overrightarrow{AB} is perpendicular to \overrightarrow{AD} (right-angle mark at A), and \overrightarrow{DC} is perpendicular to \overrightarrow{AD} (right-angle mark at D). By the geometric property, if two lines are perpendicular to the same line, they are parallel. Thus, \overrightarrow{AB} and \overrightarrow{DC} are parallel. Su's statement is true but lacks justification, making it incomplete. Hugo's explanation is incorrect because \overrightarrow{AB} and \overrightarrow{BC} are perpendicular, not parallel, and \overrightarrow{DC} and \overrightarrow{DA} are also perpendicular, not parallel.