# **DIVISION WITH REMAINDERS**

In mathematics, division is used for equal sharing or grouping. Sometimes, a number cannot be shared perfectly into equal groups. The amount that is left over after sharing is called the **remainder**.

### A DIVISION WITHOUT REMAINDERS

#### Definition **Division** -

**Division** is the **inverse operation** of multiplication. It is the process of determining how many times one number is contained within another.

The components of a division expression are formally named:

- The dividend: the number that is being divided.
- The divisor: the number by which the dividend is divided.
- The quotient: the result of the division.

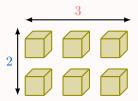
The operation is denoted by the division symbol  $(\div)$ .

 $Dividend \div Divisor = Quotient$ 

For example, the multiplication fact  $3 \times 2 = 6$  corresponds to:

$$\underbrace{6}_{\text{Dividend}} \div \underbrace{3}_{\text{Divisor}} = \underbrace{2}_{\text{Quotient}}.$$

Division can be represented in several ways:


• Numerical Form:

$$6 \div 3 = 2$$

• Word Form:

Six divided by three equals two.

• Grid Model:



### **B DIVISION WITH REMAINDERS**

### Definition Euclidean Division

**Euclidean Division** is the process of dividing one integer (the dividend) by another (the divisor) when the division is not exact. This process yields an integer quotient and a remainder.

The components of a Euclidean division expression are formally named:

- The dividend: the number that is being divided.
- The divisor: the number by which the dividend is divided.
- The quotient: the whole number of times the divisor fits into the dividend.
- The remainder: the amount left over after the division.

This relationship is defined by the identity:

$$Dividend = (Divisor \times Quotient) + Remainder$$

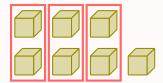
Important rules:

- The remainder is always smaller than the divisor. (If it isn't, you can still make another group!)
- If the remainder is 0, the division is **exact** (no remainder).

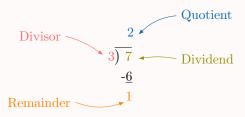
Euclidean division can be represented in several ways:

• Word Form:

Seven divided by three equals two, with a remainder of one


• Division Sentence:

$$\frac{7}{\text{Dividend}} \div \underbrace{3}_{\text{Divisor}} = \underbrace{2}_{\text{Quotient}} R \underbrace{1}_{\text{Remainder}}$$


• Euclidean Identity:

$$\frac{7}{\text{Dividend}} = \left(\underbrace{3}_{\text{Divisor}} \times \underbrace{2}_{\text{Quotient}}\right) + \underbrace{1}_{\text{Remainder}}$$

• Group Model:



• Long Division Algorithm:



### **C LONG DIVISION**

**Discover:** Long division is an organized method for solving division problems. The main idea is to find how many times one number fits into another.

2

• Case 1: An Exact Fit

To solve  $12 \div 4$ , we ask: "How many times does 4 fit into 12?" By knowing our multiplication facts, we know that  $4 \times 3 = 12$ . It fits exactly 3 times. The answer is 3.

• Case 2: A Fit with a Remainder



To solve  $13 \div 4$ , we ask: "How many times does 4 fit into 13 without going over?"

- $-4 \times 3 = 12$  (This fits)
- $-4 \times 3 = 16$  (This is too large)

So, 4 fits into 13 a total of 3 times. The amount left over is the remainder: 13 - 12 = 1. The answer is 3 with a remainder of 1.

### Method The Long Division Algorithm: Single-Step

To divide with a remainder, like  $13 \div 4$ , follow these steps:

• Set up: Write the dividend (13) inside the division bracket and the divisor (4) on the outside.

• Divide: Ask "How many times does 4 go into 13?"  ${4 \times 3 = \boxed{12}} \ (\leqslant 13), {4 \times 4 = \cancel{10}} \ (> 13).$  The answer is 3. Write 3 above the line and 12 under 13.

$$\begin{array}{r}
3 \\
4 \overline{)13} \\
-12
\end{array}$$

• Subtract: Subtract 12 from 13 to find the remainder. 13 - 12 = 1.

$$\begin{array}{r}
3 \\
4 \overline{\smash{\big)}\ 13} \\
\underline{12} \\
1
\end{array}$$

• Final answer:  $13 \div 4 = 3R1$ , and  $13 = 4 \times 3 + 1$ .

#### Method The Long Division Algorithm: Multi-Steps

To divide with a remainder, like  $130 \div 4$ , follow these steps:

• Set up: Write the dividend (130) inside the bracket and the divisor (4) outside.

• Divide the first part (13): "How many times does 4 go into 13?"

$$4 \times 3 = \boxed{12} (\le 13), \qquad 4 \times 4 = 16 (> 13).$$

Write 3 above and 12 under 13; then subtract.

• Subtract and Bring down the next digit: 13 - 12 = 1; bring down 0 to make 10.

$$\begin{array}{r}
3 \\
4 \overline{\smash{\big)}\ 130} \\
-\underline{12} \downarrow \\
10
\end{array}$$

• Divide the new number (10): "How many times does 4 go into 10?"

$$4 \times 2 = \boxed{8} (\le 10), \qquad 4 \times 3 = \cancel{12} (> 10).$$

Write 2 above, put 8 under 10, and subtract to get the remainder.

$$\begin{array}{r}
32 \\
4) 130 \\
-12 \downarrow \\
10 \\
-8 \\
2
\end{array}$$

• Final answer:  $130 \div 4 = 32R^2$ , and  $130 = 4 \times 32 + 2$ .

## D TWO WAYS TO THINK ABOUT DIVISION

#### Method The Two Models of Division

Division answers two kinds of questions. When the total does not split evenly, we record a **remainder**.

• Sharing. The number of groups is known; find the size of each group (and any leftover).

 $total \div number of groups = size of each group with a remainder.$ 

Example: 13 cookies are shared among 3 friends.

13 cookies  $\div$  3 friends = 4 cookies per friend with remainder 1 cookie.

• Grouping. The size of each group is known; find how many full groups can be made (and what remains).

 $total \div size$  of each group = number of groups with a remainder.

Example: 13 cookies are packed in bags of 4 cookies each.

13 cookies  $\div$  4 cookies per bag = 3 bags with remainder 1 cookie.