DISCRETE RANDOM VARIABLES

A RANDOM VARIABLES

A.1 DEFINITIONS

Definition Random Variable
A random variable, denoted X , is a function that assigns a numerical value to each outcome in a random experiment.
Outcome: $\omega \longrightarrow X$ Value : $X(\omega)$
The possible values of X are the real numbers that X can take.
Ex: Let X be the number of heads when tossing 2 fair coins: (red coin) and (blue coin) . Find $X(H,T)$.
Answer: The outcome (H, T) means the red coin shows heads (H) and the blue coin shows tails (T). Since X counts heads there's 1 head. Thus, $X(H, T) = 1$.
Definition Events Involving a Random Variable For a random variable X:
• $(X = x)$: The set of outcomes where X takes the value x.
• $(X \le x)$: The set of outcomes where X is less than or equal to x.
• $(X \ge x)$: The set of outcomes where X is greater than or equal to x.
Ex: Let X be the number of heads when tossing 2 coins: \bigcirc and \bigcirc . List the outcomes for $(X = 0), (X = 1)$

 $(X = 2), (X \le 1), \text{ and } (X \ge 1).$

Answer:

- $(X = 0) = \{(T, T)\}$ (no heads).
- $(X = 1) = \{(T, H), (H, T)\}$ (one head).
- $(X = 2) = \{(H, H)\}$ (two heads).
- $(X \le 1) = (X = 0) \cup (X = 1) = \{(T, T), (T, H), (H, T)\}$ (at most one head).
- $(X \ge 1) = (X = 1) \cup (X = 2) = \{(T, H), (H, T), (H, H)\}$ (at least one head).

A.2 PROBABILITY DISTRIBUTION

Definition **Probability Distribution**

The probability distribution of a random variable X lists the probability $P(X = x_i)$ for each possible value x_1, x_2, \ldots, x_n . It can be shown as a table or formula.

Proposition Characteristic of a Probability Distribution

For a random variable X with possibles values x_1, x_2, \ldots, x_n , we have

•
$$0 \le P(X = x_i) \le 1$$
 for all $i = 1, ..., n$,

•
$$\sum_{i=1}^{n} P(X = x_i) = P(X = x_1) + P(X = x_2) + \dots + P(X = x_n) = 1.$$

Ex: Let X be the number of heads when tossing 2 fair coins: \bigcirc and \bigcirc .

1. List the possible values of X.

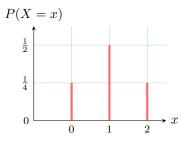
- 2. Find the probability distribution.
- 3. Create the probability table.
- 4. Draw the probability distribution graph.

Answer:

- 1. Possible values: 0 (no heads), 1 (one head), 2 (two heads).
- 2. Probability distribution:
 - $P(X = 0) = P(\{(T, T)\}) = \frac{1}{4},$
 - $P(X = 1) = P(\{(T, H), (H, T)\}) = \frac{2}{4} = \frac{1}{2},$
 - $P(X = 2) = P(\{(H, H)\}) = \frac{1}{4}.$
- 3. Probability table:

x	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

4. Graph:



A.3 EXISTENCE OF A RANDOM VARIABLE WITH A GIVEN PROBABILITY DISTRIBUTION

Usually, defining a random variable begins by establishing:

- 1. a sample space, that is, the set of all possible outcomes,
- 2. a probability associated with this sample space,
- 3. a function X that assigns a number to each outcome in the sample space.

This is quite a lengthy task. However, often, we prefer to directly define a random variable X with a given probability distribution, relying on the context of the situation being studied. For example, imagine we survey a class of 30 students about their siblings and obtain these results: 10 students have 0 siblings, 12 have 1 sibling, 5 have 2 siblings, and 3 have 3 siblings. We can then define the random variable X as the number of siblings of a randomly chosen student, with this probability distribution:

x	0	1	2	3
P(X=x)	$\frac{10}{30}$	$\frac{12}{30}$	$\frac{5}{30}$	$\frac{3}{30}$

The theorem below shows that it is always possible to construct a sample space, a probability, and a function X to obtain a random variable with this probability distribution.

Theorem Existence of a Random Variable with a Given Probability Distribution .

Suppose you have possible values x_1, x_2, \ldots, x_n and probabilities p_1, p_2, \ldots, p_n . If:

• $0 \le p_i \le 1$ for each i = 1, 2, ..., n,

•
$$\sum_{i=1}^{n} p_i = p_1 + p_2 + \dots + p_n = 1,$$

then there exists a random variable X with the probability distribution $P(X = x_i) = p_i$ for each i = 1, 2, ..., n.

Method **Defining a Random Variable** X with a Valid Probability Distribution

In practice, we often define a random variable X directly by specifying its probability distribution. The key is to ensure that this distribution is valid, meaning it satisfies the conditions for a probability distribution: all probabilities must be non-negative and sum to 1.

Ex: We survey a class of 30 students about their siblings and obtain these results: 10 students have 0 siblings, 12 have 1 sibling, 5 have 2 siblings, and 3 have 3 siblings. We define a random variable X as the number of siblings of a randomly chosen student, with this probability distribution:

x	0	1	2	3
P(X=x)	$\frac{10}{30}$	$\frac{12}{30}$	$\frac{5}{30}$	$\frac{3}{30}$

Determine if this probability distribution is valid.

Answer:

- $P(X = x) \ge 0$ for all x = 0, 1, 2, 3 (true: $\frac{10}{30}, \frac{12}{30}, \frac{5}{30}$, and $\frac{3}{30}$ are all non-negative),
- $P(X=0) + P(X=1) + P(X=2) + P(X=3) = \frac{10}{30} + \frac{12}{30} + \frac{5}{30} + \frac{3}{30} = \frac{30}{30} = 1$ (true: the sum equals 1).

Since both conditions are satisfied, the probability distribution is valid.

B EXPECTATION

B.1 DEFINITION

The **expected value** of a random variable X is the "average you'd expect if you repeated the experiment many times". It's found by taking all possible values, multiplying each by its probability, and adding them up — essentially a weighted average where the probabilities act as the weights.

Definition Expected Value

For a random variable X with possible values x_1, x_2, \ldots, x_n , the expected value, E(X), also called the mean, is:

$$E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$$

= $x_1 P(X = x_1) + x_2 P(X = x_2) + \dots + x_n P(X = x_n)$

Ex: You toss 2 fair coins, and X is the number of heads. The probability distribution is:

$$\begin{array}{c|ccc} x & 0 & 1 & 2 \\ \hline P(X=x) & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \end{array}$$

Find the expected value of X.

Answer: Calculate E(X) using the formula:

$$E(X) = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4}$$

= $\frac{1}{2} + \frac{2}{4}$
= 1

So, on average, you expect 1 head when tossing 2 coins.

C VARIANCE AND STANDARD DEVIATION

C.1 DEFINITIONS

The variance measures how spread out the values of a random variable are from its expected value. The standard deviation is the square root of the variance, giving a sense of typical deviation in the same units as X.

Definition Variance and Standard Deviation The environment of V(X) is

The **variance**, denoted V(X), is:

$$V(X) = \sum_{i=1}^{n} (x_i - E(X))^2 P(X = x_i)$$

= $(x_1 - E(X))^2 P(X = x_1) + (x_2 - E(X))^2 P(X = x_2) + \dots + (x_n - E(X))^2 P(X = x_n)$

The standard deviation, denoted $\sigma(X)$, is $\sigma(X) = \sqrt{V(X)}$.

Ex: You toss 2 fair coins, and X is the number of heads. The probability table is:

x	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Given E(X) = 1, find the variance.

Answer: Calculate V(X):

$$V(X) = (0-1)^2 \times \frac{1}{4} + (1-1)^2 \times \frac{1}{2} + (2-1)^2 \times \frac{1}{4}$$
$$= 1 \times \frac{1}{4} + 0 \times \frac{1}{2} + 1 \times \frac{1}{4}$$
$$= \frac{1}{4} + 0 + \frac{1}{4}$$
$$= \frac{1}{2}$$

The variance is $\frac{1}{2}$.

D CLASSICAL DISTRIBUTIONS

D.1 UNIFORM DISTRIBUTION

Definition Uniform Distribution A random variable X follows a uniform distribution if each possible value has the same probability:

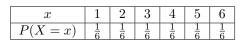
 $P(X = x) = \frac{1}{\text{Number of possible values}}, \text{ for any possible value } x.$

Ex: Let X be the result of rolling a fair die: $\begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}$

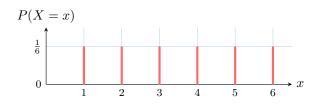
- 1. List the possible values of X.
- 2. Create the probability table.
- 3. Draw the probability distribution graph.

Answer:

- 1. Possible values: 1, 2, 3, 4, 5, 6.
- 2. Probability table:



3. Graph:



D.2 BERNOULLI DISTRIBUTION

A Bernoulli distribution models an experiment with two outcomes: success (1) or failure (0), like flipping a coin where heads is 1 and tails is 0. The probability of success is p.

Definition Bernoulli Distribution

A random variable X follows a **Bernoulli distribution** if:

- Possible values are 0 and 1.
- P(X = 1) = p and P(X = 0) = 1 p.

We write $X \sim B(p)$.

Ex: A basketball player has an 80% chance of making a free throw. Let X = 1 if the shot is made, and X = 0 if it's missed.

- 1. Is X a Bernoulli random variable?
- 2. Find the probability of success.

Answer:

- 1. Yes, X has values 0 or 1, so it follows a Bernoulli distribution.
- 2. Probability of success: P(X = 1) = 80% = 0.8.

Proposition Expectation and Variance of a Bernoulli Distribution

For a Bernoulli random variable X with a probability of success p, the following hold:

- The expected value is E(X) = p,
- The variance is V(X) = p(1-p),
- The standard deviation is $\sigma(X) = \sqrt{p(1-p)}$.

D.3 BINOMIAL DISTRIBUTION

Suppose a basketball player takes n free throws, and we count the number of shots made. The probability of making a free throw is the same for each attempt, and each shot is independent of every other shot. This is an example of a binomial experiment.

Definition Binomial Random Variable

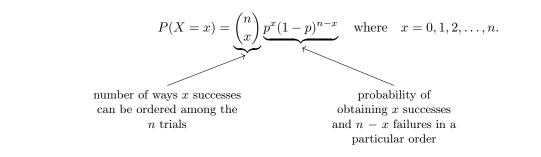
In a binomial experiment:

- There are a fixed number of independent trials,
- Each trial has only two possible outcomes: success (if the event occurs) or failure (if it does not),
- The probability of success is constant for each trial.

Let X be the number of successes in a binomial experiment with n trials, each with a probability of success p. X is called a binomial random variable.

Proposition Distribution of a Binomial Random Variable

Let X be a binomial random variable with n independent trials and a probability of success p. The probability distribution of X is:



This is called the **binomial distribution**, and we write $X \sim B(n, p)$.

Ex: A basketball player has an 80% chance of making a free throw and takes 5 shots. Let X be the number of shots made.

- 1. Is X a binomial random variable?
- 2. Find the probability of making 4 shots.

Answer:

- 1. Yes, X is a binomial random variable because it counts the number of successes (shots made) in 5 independent trials (free throws), each with a constant success probability of 0.8.
- 2. As $X \sim B(5, 0.8)$,

$$P(X = 4) = {\binom{5}{4}} (0.8)^4 (1 - 0.8)^1$$

= 5 × 0.4096 × 0.2
= 0.4096

The probability of making 4 shots is 0.4096.

Proposition Expectation and Variance of a Binomial Random Variable – For $X \sim B(n, p)$:

- E(X) = np (expected value),
- V(X) = np(1-p) (variance),
- $\sigma(X) = \sqrt{np(1-p)}$ (standard deviation).

Ex: A basketball player has an 80% chance of making a free throw and takes 5 shots. Find the mean and standard deviation of the number of successful shots.

Answer: Let X be the number of successful shots. Since each shot is independent and has a success probability of 0.8, we have $X \sim B(5, 0.8)$.

$$E(X) = 5 \times 0.8 = 4,$$

$$V(X) = 5 \times 0.8 \times (1 - 0.8) = 5 \times 0.8 \times 0.2 = 0.8,$$

$$\sigma(X) = \sqrt{0.8} \approx 0.89.$$

 $\mathbf{6}$

Mean is 4 successful shots, standard deviation is about 0.89.