A TANGENTS AND NORMALS

A.1 EQUATION OF THE TANGENT

A.1.1 FINDING THE EQUATION OF THE TANGENT

Ex 1: Find the equation of the tangent to $f(x) = x^2$ at x = 1.

$$y =$$

Ex 2: Find the equation of the tangent to $f(x) = x + \ln(x)$ at x = 1.

$$y =$$

Ex 3: Find the equation of the tangent to $f(x) = \sqrt{x^2 + 5}$ at

$$y =$$

Ex 4: Find the equation of the tangent to $f(x) = \frac{1}{x+1}$ at x = 1. **Ex 10:** Graphically, find the variations for the function $f(x) = \frac{1}{x+1}$

$$y =$$

A.2 EQUATION OF THE NORMAL

A.2.1 FINDING THE EQUATION OF THE NORMAL

Ex 5: Find the equation of the normal to $f(x) = x^2$ at x = 1.

$$y =$$

Ex 6: Find the equation of the normal to $f(x) = x + \ln(x)$ at x = 1.

$$y =$$

Ex 7: Find the equation of the normal to $f(x) = \frac{e^x}{x^2+1}$ at x = 1.

$$x = \boxed{}$$

Ex 8: Find the equation of the normal to $f(x) = (x+1)\cos(x)$ at x = 0.

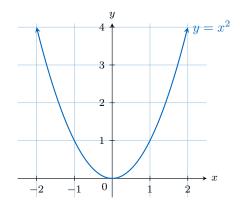
$$y =$$

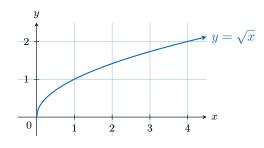
DECREASING INCREASING AND В **FUNCTIONS**

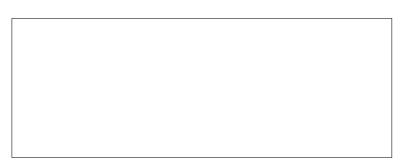
B.1 DEFINITION

B.1.1 DETERMINING VARIATIONS GRAPHICALLY

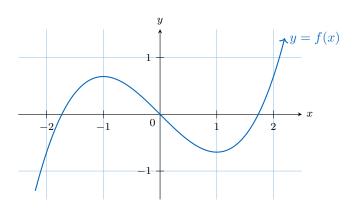
Ex 9: Graphically, find the variations for the function $f(x) = x^2$.

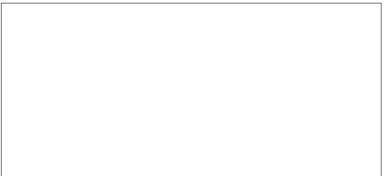




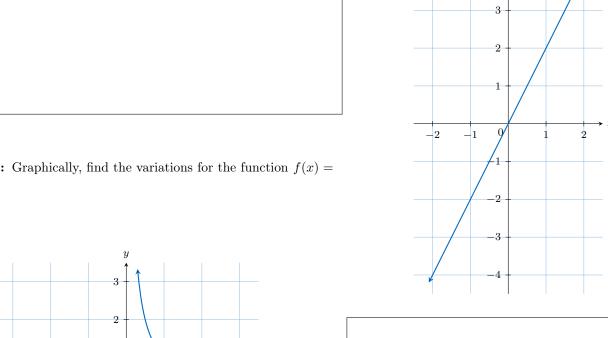


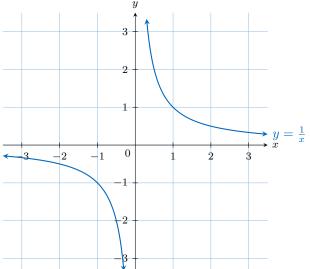
Ex 11: Graphically, find the variations for the function f(x) =





Ex 12: Graphically, find the variations for the function f(x) =

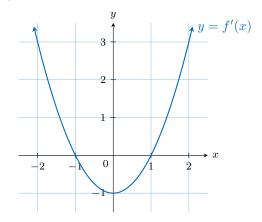




Ex 14: The graph of the derivative function, $f'(x) = x^2 - 1$, is

y = f'(x)

shown below. Use it to determine the variations of the original function, f.

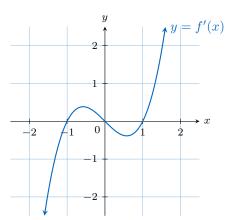


B.2 FIRST DERIVATIVE TEST

B.2.1 DETERMINING VARIATIONS FROM THE **DERIVATIVE GRAPH**

Ex 13: The graph of the derivative function, f'(x) = 2x, is shown below. Use it to determine the variations of the original function, f.

Ex 15: The graph of the derivative function, $f'(x) = x^3 - x$, is shown below. Use it to determine the variations of the original function, f.



B.2.3 STUDYING FUNCTION VARIATIONS

Ex 18: Find the variations of the function $f(x) = x^2$.

Ex 19: Find the variations of the function $f(x) = \frac{x^3}{3} - x$.

B.2.2 STUDYING THE VARIATIONS OF STANDARD FUNCTIONS

Ex 16: Prove that $f(x) = \sqrt{x}$ is an increasing function on its domain.

Ex 17: Prove that $f(x) = \ln(x)$ is an increasing function on its

Ex 20: Find the variations of the function $f(x) = \frac{x^3}{3} - \frac{3x^2}{2} + 2x - 1$.

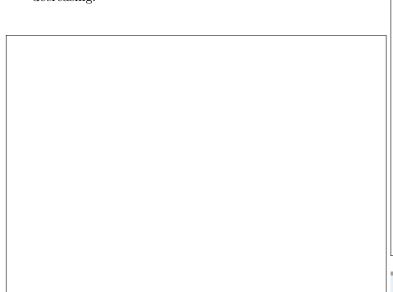
B.2.4 STUDYING FUNCTION VARIATIONS: LEVEL 2

Ex 21: Let $f(x) = \ln(x) - \frac{x^2}{2}$.

- 1. Show that $f'(x) = \frac{(1-x)(1+x)}{x}$.
- 2. Draw the sign diagram for f'(x).

domain.

3. Hence, find the intervals where y = f(x) is increasing or decreasing.

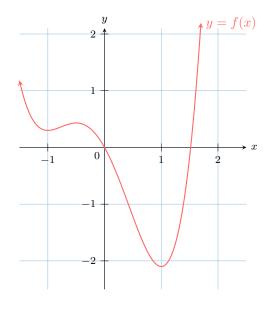


C EXTREMA OF FUNCTIONS

C.1 DEFINITIONS

C.1.1 IDENTIFYING EXTREMA FROM A GRAPH

 \mathbf{MCQ} 24: Consider the function f whose graph is shown below. Which of the following statements is true?



 \square The function has a global minimum at x=-1 and a local minimum at x=1.

 \Box The function has global minima at x=-1 and x=1.

 \Box The function has a local minimum at x=-1 and a global minimum at x=1.

MCQ 25: Consider the function f whose graph is shown below. Which of the following statements is true?

(-<u>+</u>)

Ex 22: Let $f(x) = \frac{2-x}{x-1}$.

1. Show that $f'(x) = -\frac{1}{(x-1)^2}$.

2. Draw the sign diagram for f'(x).

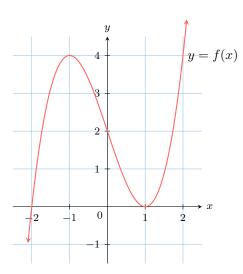
3. Hence, find the intervals where y=f(x) is increasing or decreasing.

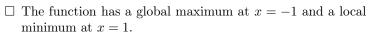
Ex 23: Let $f(x) = x + \frac{9}{x}$.

1. Show that $f'(x) = \frac{(x+3)(x-3)}{x^2}$.

2. Draw the sign diagram for f'(x).

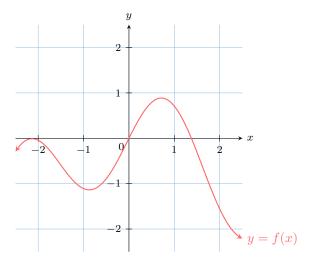
3. Hence, find the intervals where y=f(x) is increasing or decreasing.





- \square The function has a local maximum at x=-1 and a local minimum at x=1.
- \square The function has a global maximum at x=-1 and a global minimum at x=1.

MCQ 26: Consider the function f whose graph is shown below. Which of the following statements is true?



- \Box The function has a global maximum at $x\approx 0.7$ and a local maximum at $x\approx -2.5.$
- \Box The function has a local maximum at $x\approx 0.7$ and no global maximum.
- \Box The function has a local maximum at $x\approx 0.7$ and a global maximum at $x\approx -2.5.$

C.2 FIRST DERIVATIVE TEST FOR LOCAL EXTREMA

C.2.1 FINDING AND CLASSIFYING EXTREMA: LEVEL 1

Ex 27: Let $f(x) = x^2 - 4x + 3$.

- 1. Find the derivative, f'(x).
- 2. Find the x-coordinate of the stationary point of the function.
- 3. Hence, classify the stationary point as a local maximum or a local minimum.

Ex 28: Let $f(x) = -x^2 - 2x + 8$.

- 1. Find the derivative, f'(x).
- 2. Find the x-coordinate of the stationary point of the function.
- 3. Hence, classify the stationary point as a local maximum or a local minimum.

Ex 29: Let $f(x) = 2x^3 - 3x^2 - 12x + 5$.

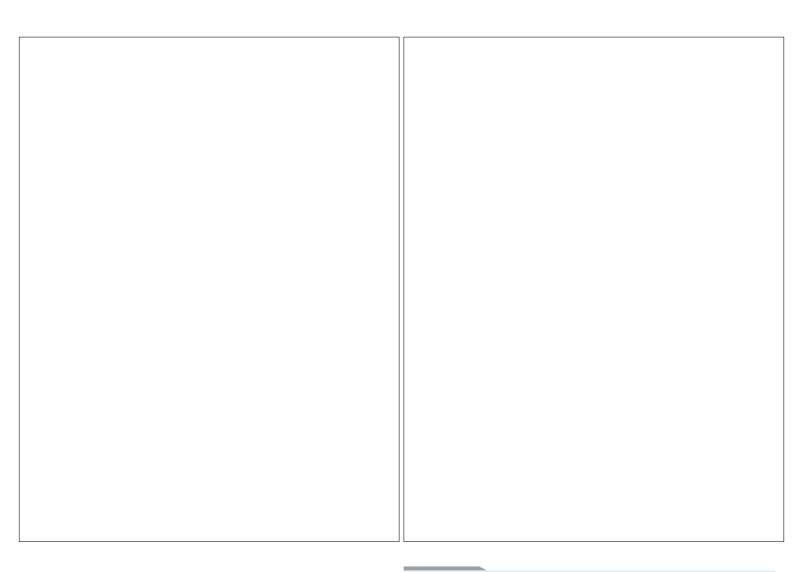
- 1. Find the derivative, f'(x).
- 2. Find the x-coordinates of the stationary points of the function.
- 3. Hence, classify each stationary point as a local maximum or a local minimum.

C.2.2 FINDING AND CLASSIFYING EXTREMA: LEVEL

Ex 30: Let $f(x) = x\sqrt{4-x}$ for $x \le 4$.

- 1. Show that the derivative is $f'(x) = \frac{8-3x}{2\sqrt{4-x}}$.
- 2. Find the coordinates of the stationary point on the graph of y = f(x).
- 3. Using the first derivative test, determine the nature of this stationary point.
- 4. Find the global maximum and global minimum values of the function on the interval [-5, 4].

- Ex 31: Let $f(x) = \frac{\ln x}{x}$ for x > 0.
 - 1. Show that the derivative is $f'(x) = \frac{1 \ln x}{x^2}$.
 - 2. Find the exact coordinates of the stationary point on the graph of y = f(x).
 - 3. Using the first derivative test, determine the nature of this stationary point.
 - 4. Find the global maximum and global minimum values of the function on the interval [1, 4].



Ex 32: Let $f(x) = xe^{-x}$.

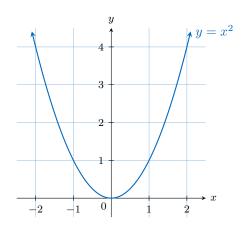
- 1. Show that the derivative is $f'(x) = \frac{1-x}{e^x}$.
- 2. Find the coordinates of the stationary point on the graph of y=f(x).
- 3. Using the first derivative test, determine the nature of this stationary point.
- 4. Find the global maximum and global minimum values of the function on the interval [-1,3].

D CONCAVITY

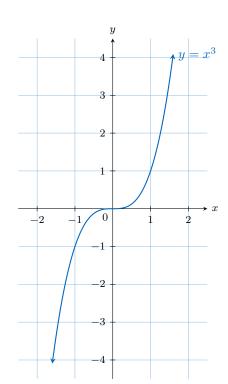
D.1 DEFINITION

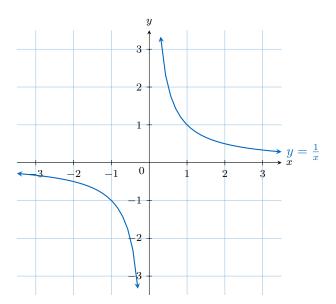
D.1.1 DETERMINING CONCAVITY GRAPHICALLY

Ex 33: Graphically, determine the concavity of the function $f(x) = x^2$.

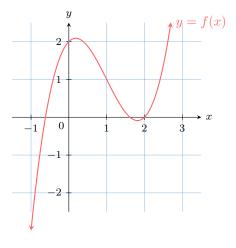


Ex 34: Graphically, determine the intervals of concavity for the function $f(x) = \frac{1}{x}$.





Ex 36: Graphically, find the point of inflection and describe the concavity for the function f(x) shown below.



Ex 35: Graphically, determine the concavity of the function $f(x) = x^3$.

8

D.2 SECOND DERIVATIVE TEST FOR CONCAVITY

D.2.1 DETERMINING CONCAVITY: LEVEL 1

Ex 37: Let $f(x) = x^3$.

- 1. Find the second derivative, f''(x).
- 2. Create a sign diagram for f''(x).
- 3. Hence, determine the intervals where the function is concave up and concave down.

D.2.2 DETERMINING CONCAVITY: LEVEL 2

Ex 40: Let $f(x) = 2x^4 - 8x^3 + 12x^2 + 3$.

- 1. Show that $f''(x) = 24(x-1)^2$.
- 2. Hence, determine the concavity of the graph of y = f(x).

Ex 38: Let $f(x) = \frac{1}{x}$.

- 1. Find the second derivative, f''(x).
- 2. Create a sign diagram for f''(x).
- 3. Hence, determine the intervals where the function is concave up and concave down.

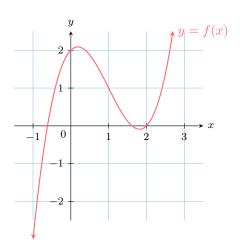
Ex 41: The function f is defined by $f(x) = e^x \cos(x)$ for $x \in [0, 2\pi]$.

- 1. Find an expression for f'(x).
- 2. Show that $f''(x) = -2e^x \sin(x)$.
- 3. Hence, find the interval(s) where the graph of f is concave down.

Ex 39: Let $f(x) = x^3 - 3x^2 + x$.

- 1. Find the second derivative, f''(x).
- 2. Create a sign diagram for f''(x).
- 3. Hence, determine the intervals where the function is concave up and concave down.

Ex 43: Graphically, find the point of inflection for the function f(x) shown below.

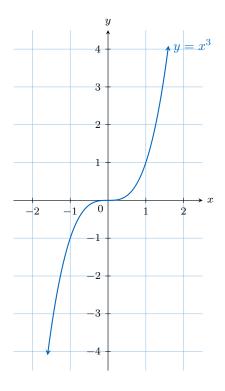


E POINTS OF INFLECTION

E.1 DEFINITION

E.1.1 IDENTIFYING POINTS OF INFLECTION FROM A GRAPH

Ex 42: Graphically, find the point of inflection for the function $f(x) = x^3$.

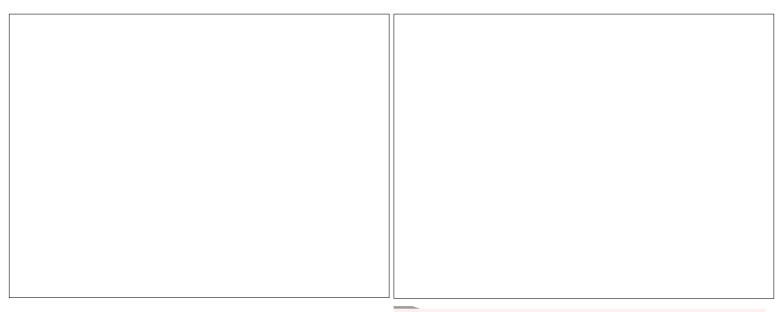


E.2 SECOND DERIVATIVE TEST FOR POINTS OF INFLECTION

E.2.1 DETERMINING POINTS OF INFLECTION: LEVEL 1

Ex 44: Let $f(x) = x^3$.

- 1. Find the second derivative, f''(x).
- 2. Find the x-coordinate of the potential point of inflection by solving f''(x) = 0.
- 3. Use a sign diagram for f''(x) to show that a point of inflection exists at this x-coordinate.
- 4. Find the coordinates of the point of inflection and classify it as stationary or non-stationary.



Ex 45: Let $f(x) = x^3 - 3x^2 + x + 2$.

- 1. Find the second derivative, f''(x).
- 2. Find the x-coordinate of the potential point of inflection.
- 3. Use a sign diagram for f''(x) to show that a point of inflection exists at this x-coordinate.
- 4. Find the coordinates of the point of inflection and classify it as stationary or non-stationary.

Ex 46: Let $f(x) = \frac{1}{12}x^4 - \frac{1}{2}x^3 + x^2$.

- 1. Find the first and second derivatives of f(x).
- 2. Find the x-coordinates of the potential points of inflection.
- 3. Use a sign diagram for f''(x) to show that points of inflection exist at these x-coordinates.
- 4. Find the coordinates of the points of inflection and classify them as stationary or non-stationary.

E.2.2 DETERMINING POINTS OF INFLECTION: LEVEL 2

Ex 47: Let $f(x) = x^3 - 6x^2 + 12x - 5$.

- 1. Find expressions for f'(x) and f''(x).
- 2. Find the coordinates of the stationary point of f(x).
- 3. Find the coordinates of the point of inflection.
- 4. Show that the stationary point is also the point of inflection.

Ex 48: Let $f(x) = xe^{-x}$.

- 1. Find expressions for f'(x) and f''(x).
- 2. Find the coordinates of the stationary point and determine its nature.

6. Find the coordinates of the point of inflection.
. Find the interval(s) where the graph of f is concave down.