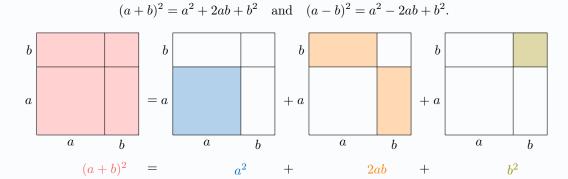
BINOMIAL EXPANSION

In this chapter we study the expansion of powers of a binomial expression such as $(a + b)^n$, where n is a positive integer. We will discover patterns in the coefficients using Pascal's triangle, and then state and use the **Binomial Theorem**.

A BINOMIAL EXPANSION FOR n=2 AND n=3

Proposition Perfect Squares Expansion .

The square of a sum and the square of a difference can be written as:



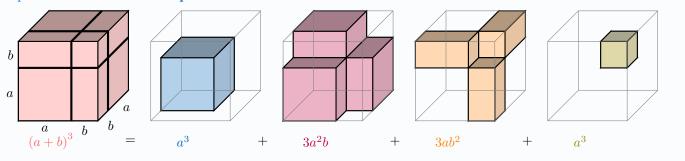
Ex: Expand and simplify $(x+2)^2$.

Answer: Using the formula $(a+b)^2 = a^2 + 2ab + b^2$ with a=x and b=2:

$$(x + 2)^2 = x^2 + 2 \times x \times 2 + 2^2$$
$$= x^2 + 4x + 4.$$

So $(x+2)^2 = x^2 + 4x + 4$.

Proposition Perfect Cube Expansion



Ex: Expand and simplify $(x+2)^3$

Answer: In the perfect cube expansion, we substitute a = x and b = 2:

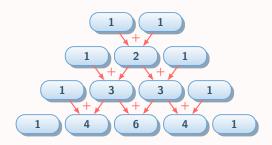
$$(x + 2)^3 = x^3 + 3 \times x^2 \times 2 + 3 \times x \times 2^2 + 2^3$$

= $x^3 + 6x^2 + 12x + 8$

B PASCAL'S TRIANGLE

Definition Pascal's Triangle

- The values at the ends of each row are always 1.
- Each interior value is found by adding the two values diagonally above it.



Ex: Find the 5th row of Pascal's triangle.

Answer:

So the 5th row is 1, 5, 10, 10, 5, 1.

Proposition Binomial Expansion —

For the binomial expansion of $(a+b)^n$ where $n \in \mathbb{N}$:

- As we look from left to right across the expansion, the powers of a decrease by 1, while the powers of b increase by 1.
- The sum of the powers of a and b in each term of the expansion is n.
- The number of terms in the expansion is n+1.
- The coefficients of the terms are row n of Pascal's triangle.

Ex: Find the binomial expansion of $(a + b)^5$.

Answer: From the 5th row of Pascal's triangle

we get

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5.$$

C THE BINOMIAL THEOREM

Definition Factorial -

For any positive integer n, n! (read as "n factorial") is the product of the first n positive integers:

$$n! = n \times (n-1) \times \cdots \times 2 \times 1.$$

By convention, we define 0! = 1.

Ex: Calculate 4!.

Answer:
$$4! = 4 \times 3 \times 2 \times 1$$

= 24

Definition Binomial Coefficient —

For any integers $n \ge p \ge 0$, the binomial coefficient $\binom{n}{n}$ is defined as

$$\binom{n}{p} = \frac{n!}{p!(n-p)!}$$

Proposition Binomial Theorem

For any integer n > 0 and any real numbers $a, b \in \mathbb{R}$, we have

$$(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}a^0b^n,$$

or more compactly,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$