AREA

A AREA UNITS

A.1 APPROPRIATE UNITS

MCQ 1: Choose the most appropriate unit of measure for the area of a bedroom.

- $\boxtimes\,$ Square Meter
- \Box Square Kilometer
- \Box Square Centimeter

Solution: Since we measure the dimensions of the bedroom in meters, the most appropriate unit for the area is Square Meter.

MCQ 2: Choose the most appropriate unit of measure for the area of Hawaii Island.

- \Box Square Meter
- $\boxtimes\,$ Square Kilometer
- \Box Square Centimeter

Solution: Since the area of Hawaii Island is very large, the most appropriate unit for the area is Square Kilometer. Hawaii Island has an area of approximately 10,432 square kilometers.

MCQ 3: Choose the most appropriate unit of measure for the area of a postage stamp.

- \Box Square Meter
- □ Square Kilometer
- \boxtimes Square Centimeter

Solution: Since the dimensions of a postage stamp are very small, the most appropriate unit for the area is Square Centimeter. A typical postage stamp has an area of approximately 5 square centimeters.

MCQ 4: Choose the most appropriate unit of measure for the area of a classroom wall.

- $\boxtimes\,$ Square Meter
- \Box Square Kilometer
- \Box Square Centimeter

Solution: Since we measure the dimensions of a classroom wall in meters, the most appropriate unit for the area is Square Meter. A typical classroom wall has an area of approximately 30 square meters.

A.2 CONVERTING

Ex 5: 24.5 $m^2 = 245000 \text{ cm}^2$

Solution:

• Solution 1:

$$24.5 \text{ m}^2 = 24.5 \times 10\,000 \text{ cm}^2$$
$$= 245\,000 \text{ cm}^2$$

	$\rm km^2$		ha				m^2				cm^2		mm^2	
[2	4.	5	0	0	0		

 $24.5 \text{ m}^2 = 245\,000 \text{ cm}^2$

Ex 6:
$$5\,000 \text{ cm}^2 = 0.5 \text{ m}^2$$

Solution:

• Solution 1:

$$5\,000 \text{ cm}^2 = 5\,000 \div 10\,000 \text{ m}^2$$

= 0.5 m²

• Solution 2:

 $5\,000 \text{ cm}^2 = 0.5 \text{ m}^2$

Ex 7: $0.25 \text{ cm}^2 = 25 \text{ mm}^2$

Solution:

- Solution 1: $0.25 \text{ cm}^2 = 0.25 \times 100 \text{ mm}^2$ $= 25 \text{ mm}^2$
- Solution 2:

km ²	ha	m^2	cm^2	mm^2	
			0.	2	5

$$0.25 \text{ cm}^2 = 25 \text{ mm}^2$$

Ex 8: 534 mm² =
$$5.34$$
 cm²

Solution:

• Solution 1:

$$534 \text{ mm}^2 = 534 \div 100 \text{ cm}^2$$

= 5.34 cm²

• Solution 2:

 $534 \text{ mm}^2 = 5.34 \text{ cm}^2$

Ex 9: 3.5 ha =
$$35000$$
 m²

Solution:

• Solution 1:

$$3.5 ha = 24.5 \times 10000 m^2$$

= 35000 m²

• Solution 2:

 $3.5~{\rm ha} = 35\,000~{\rm m}^2$

Ex 10: $6\,000 \text{ m}^2 = 0.6$ ha

Solution:

• Solution 1:

$$6\,000 \text{cm}^2 = 6\,000 \div 10\,000$$
 ha
$$= 0.6 \text{ ha}$$

• Solution 2:

km ²	ha				m ²				cm^2		mm ²	
	0.	6	0	0	0							

 $6\,000 {\rm cm^2} = 0.6$ ha

B DEFINITION

B.1 COUNTING

Solution:

 $A = 7 \times \blacksquare$ $= 7 \times 1 \text{ cm}^2$ $= 7 \text{ cm}^2$

Solution:

$$A = 5 \times \blacksquare$$
$$= 5 \times 1 \text{ cm}^2$$
$$= 5 \text{ cm}^2$$

Ex 13: Find the area of the red figure :

Solution:

 $A = 10 \times \blacksquare$ $= 10 \times 1 \text{ cm}^2$ $= 10 \text{ cm}^2$

Ex 14: Find the area of the red figure :

 $A = 16 \times \blacksquare$ $= 16 \times 1 \text{ cm}^2$ $= 16 \text{ cm}^2$

C AREA OF USUAL FIGURES

C.1 DIRECT APPLICATIONS

Ex 15: Find the area of the figure

Solution:

Solution:

 $A = l \times L$ = 3 m × 2 m = 6 m²

Ex 16: Find the area of the figure

Solution:

$$A = s \times s$$

= 2 cm × 2 cm
= 4 cm²

Solution:

$$A = s \times s$$

= 3 km × 3 km
= 9 km²

Ex 18: Find the area of the figure

Solution:

 $A = s \times s$ = 4 mm × 4 mm = 16 mm²

Ex 19: Find the area of the figure (you can use a calculator)

Solution:

$$A = b \times h$$

= 2.5 m × 3.5 m
= 8.75 m²

Ex 20: Find the area of the figure (you can use a calculator)

Solution:

 $A = b \times h$ = 6 cm × 20.5 cm = 123 cm²

Solution:

$$A = \frac{b \times h}{2}$$
$$= \frac{3 \text{ cm} \times 2 \text{ cm}}{2}$$
$$= 3 \text{ cm}^2$$

Ex 22: Find the area of the figure

Ex 23: Find the area of the figure

 $A = \frac{b \times h}{2}$ $= \frac{4 \text{ m} \times 3 \text{ m}}{2}$ $= 6 \text{ m}^2$

Ex 24: Use a calculator to find the area of the figure (round at 1 decimal place)

www.commeunjeu.com

Solution:

Solution:

Solution:

$$A = \pi \times r \times r$$

= $\pi \times 2 \text{ cm} \times 2 \text{ cm}$
= 12.56637... cm²
 $\approx 12.6 \text{ cm}^2$

ŀ

Ex 25: Use a calculator to find the area of the figure (round to 1 decimal place)

Solution:

• The radius is half of the diameter.

$$r = \frac{a}{2}$$
$$= \frac{5}{2}$$
$$= 2.5 \text{ m}$$

• The area of circle is

$$A = \pi \times r \times r$$
$$= \pi \times 2.5 \times 2.5$$
$$\approx 19.6 \text{ m}^2$$

Ex 26: Use a calculator to find the area of the figure (round to 1 decimal place)

- The radius is half of the diameter.
 - $r = \frac{d}{2}$ $= \frac{10}{2}$ = 5 m
- The area of the circle is

 $A = \pi \times r \times r$ $= \pi \times 5 \times 5$ $= 78.5398 \text{ m}^2$ $\approx 78.5 \text{ m}^2$

C.2 TRAPEZIUM

Ex 27: Use a calculator to find the area of the figure (round to 1 decimal place)

Solution: The area of the trapezium is

$$A = \frac{a+b}{2} \times h$$
$$= \frac{3+1.5}{2} \times 2$$
$$= 4.5 \text{ m}^2$$

Ex 28: Use a calculator to find the area of the figure (round to 1 decimal place)

Solution: The area of the trapezium is

$$A = \frac{a+b}{2} \times h$$
$$= \frac{5+2}{2} \times 2.5$$
$$= 8.75 \text{ m}^2$$

Ex 29: Use a calculator to find the area of the figure (round to 1 decimal place)

Solution:

Solution: The area of the trapezium is

$$A = \frac{a+b}{2} \times h$$
$$= \frac{4+2}{2} \times 3$$
$$= 9 \text{ m}^2$$

Ex 30: Use a calculator to find the area of the figure (round to 1 decimal place)

Solution: The area of the trapezium is

$$A = \frac{a+b}{2} \times h$$
$$= \frac{3+1.5}{2} \times 2$$
$$= 4.5 \text{ m}^2$$

C.3 WORD PROBLEMS

Ex 31: A rectangular terrace is 8 m long and 5 m wide. Find the area of the terrace and the cost to tile it if the tiling costs 20 dollars per square meter.

$$A = 40 \text{ m}^2 \text{ and } \text{cost} = 800 \text{ dollars}$$

Solution: To find the area of the rectangular terrace, we use the formula for the area of a rectangle:

$$A = \text{length} \times \text{width}$$

Given:

- Length of the terrace, L = 8 m
- Width of the terrace, W = 5 m

Calculating the area:

$$A = 8 \text{ m} \times 5 \text{ m}$$
$$= 40 \text{ m}^2$$

The cost to tile the terrace is calculated by multiplying the area by the cost per square meter:

 $Cost = A \times 20$ dollars per square meter

Calculating the cost:

$$Cost = 40 m^2 \times 20$$
 dollars per square meter
= 800 dollars

Therefore, the area of the terrace is 40 m^2 and the cost to tile it is 800 dollars.

Ex 32: A triangular garden has a base of 12 m and a height of 8 m. Find the area of the garden and the cost to plant grass if the cost is 5 dollars per square meter.

 $A = 48 \text{ m}^2 \text{ and } \text{cost} = 240 \text{ dollars}$

Solution: To find the area of the triangular garden, we use the formula for the area of a triangle:

$$A = \frac{\text{base} \times \text{height}}{2}$$

Given:

- Base of the garden, B = 12 m
- Height of the garden, H = 8 m

Calculating the area:

$$A = \frac{12 \text{ m} \times 8 \text{ m}}{2}$$
$$= \frac{96 \text{ m}^2}{2}$$
$$= 48 \text{ m}^2$$

The cost to plant grass in the garden is calculated by multiplying the area by the cost per square meter:

$$Cost = A \times 5$$
 dollars per square meter

Calculating the cost:

$$Cost = 48 m^2 \times 5$$
 dollars per square meter
= 240 dollars

Therefore, the area of the garden is 48 m^2 and the cost to plant grass is 240 dollars.

Ex 33: A rectangular wall is 8 m long and 5 m high. Find the area of the wall and the cost to paint it if the paint costs 20 dollars per square meter.

$$4 = 40 \text{ m}^2 \text{ and } \text{cost} = 800 \text{ dollars}$$

Solution: To find the area of the rectangular wall, we use the formula for the area of a rectangle:

$$4 = \text{length} \times \text{height}$$

Given:

- Length of the wall, L = 8 m
- Height of the wall, H = 5 m

Calculating the area:

$$A = 8 \text{ m} \times 5 \text{ m}$$
$$= 40 \text{ m}^2$$

The cost to paint the wall is calculated by multiplying the area by the cost per square meter:

 $Cost = A \times 20$ dollars per square meter

Calculating the cost:

$$Cost = 40 m^2 \times 20$$
 dollars per square meter
= 800 dollars

Therefore, the area of the wall is 40 m^2 and the cost to paint it is 800 dollars.

Ex 34: A triangular roof has a base of 10 m and a height of 6 m. Find the area of the roof and the cost to cover it with wood if the wood costs 15 dollars per square meter.

$$A = 30 \text{ m}^2 \text{ and } \text{cost} = 450 \text{ dollars}$$

Solution: To find the area of the triangular roof, we use the formula for the area of a triangle:

$$A = \frac{\text{base} \times \text{height}}{2}$$

Given:

- Base of the roof, B = 10 m
- Height of the roof, H = 6 m

Calculating the area:

$$A = \frac{10 \text{ m} \times 6 \text{ m}}{2}$$
$$= \frac{60 \text{ m}^2}{2}$$
$$= 30 \text{ m}^2$$

The cost to cover the roof with wood is calculated by multiplying the area by the cost per square meter:

$$Cost = A \times 15$$
 dollars per square meter

Calculating the cost:

 $Cost = 30 m^2 \times 15$ dollars per square meter = 450 dollars

Therefore, the area of the roof is 30 m^2 and the cost to cover it with wood is 450 dollars.

D AREA OF COMPOSITE FIGURES

D.1 PART OF CIRCLES

Ex 35: Use a calculator to find the area of the figure (round to 1 decimal place)

Solution:

• The radius is:

 $r=20~{\rm cm}$

• The area of the half-circle is

$$A = \frac{\pi \times r \times r}{2}$$
$$= \frac{\pi \times 20 \text{ cm} \times 20 \text{ cm}}{2}$$
$$\approx 628.3 \text{ cm}^2$$

Ex 36: Use a calculator to find the area of the figure (round at 1 decimal place)

$$A =$$
Area of quarter of the circle

$$= \frac{\pi \times r \times r}{4}$$
$$= \frac{\pi \times 12 \text{ m} \times 12 \text{ m}}{4}$$
$$\approx 113.1 \text{ m}^2$$

Ex 37: Use a calculator to find the area of the figure (round to 1 decimal place)

Solution:

Solution:

• The radius is half of the diameter.

$$\dot{r} = \frac{d}{2}$$
$$= \frac{40}{2}$$
$$= 20 \text{ m}$$

r

• The area of the half-circle is

$$A = \frac{\pi \times r \times r}{2}$$
$$= \frac{\pi \times 20 \text{ cm} \times 20 \text{ cm}}{2}$$
$$\approx 628.3 \text{ cm}^2$$

D.2 ADD OR SUB

Ex 38: Find the area of the figure

°±°)

Ex 39: Find the area of the figure

Ex 40: Find the area of the figure

Solution: $A = \text{area of rectangle } + 2 \times \text{area of triangle}$

$$= 12 \times 7 + 2 \times \frac{2 \times 2}{2}$$
$$= 88 \text{ m}^2$$

MCQ 41: Choose the correct formula to calculate the the area of the figure

 $\Box A = 10 \times 10 + \pi \times 5 \times 5$

$$\boxtimes A = 10 \times 10 + \frac{\pi \times 5 \times 5}{2}$$
$$\Box A = 10 \times 10 + \frac{\pi \times 10 \times 10}{2}$$
$$\Box A = 10 \times 10 + \pi \times 10 \times 10$$

Solution: A = area of square + area of semi-circle

$$= 10 \times 10 + \frac{\pi \times 5 \times 5}{2}$$
$$\approx 139.3 \text{ cm}^2$$

MCQ 42: Choose the correct formula to calculate the the area of the figure

$$\Box \ A = 2 \times \pi \times 2.5$$

- $\Box \ A = \pi \times 1.5 \times 1.5 \pi \times 1 \times 1$
- $\Box \ A = \pi \times 2.5 \times 2.5$
- $\boxtimes \ A=\pi\times 2.5\times 2.5-\pi\times 1.5\times 1.5$

Solution: A = area of large circle – area of small circle

$$= \pi \times 2.5 \times 2.5 - \pi \times 1.5 \times 1.5$$
$$\approx 12.6 \text{ cm}^2$$

 \mathbf{MCQ} 43: Choose the correct formula to calculate the the area of the figure

 $\boxtimes A = \frac{\pi \times 5 \times 5}{2}$ $\Box A = \pi \times 5 \times 5$ $\Box A = \frac{\pi \times 5 \times 5}{2} + \frac{\pi \times 2.5 \times 2.5}{2}$ $\Box A = \pi \times 2.5 \times 2.5$

Solution: A = Area of large semi-circle - Area of small semi-circle

(°±°)

+ Area of small semi-circle
= Area of large semi-circle
=
$$\frac{\pi \times 5 \times 5}{2}$$

 $\approx 39.3 \text{ cm}^2$