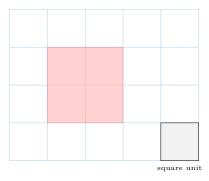
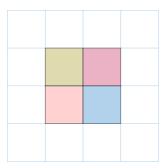
AREA

A DEFINITION


Definition **Area**

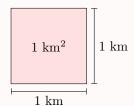
The area of a shape is how much space it covers on a flat surface.


We measure area by counting how many square units fit inside the shape.

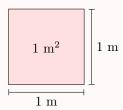
To find the area of a shape, we can place it on a grid and count the total number of squares it covers. You can think of it like tiling a floor — the area is the total number of tiles you use.

Ex: Find the area of the green shape. Each small square in the grid is 1 square unit.

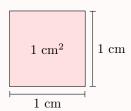
Answer: To find the area, we count each square unit inside the shape.

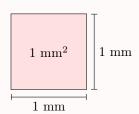

There are 4 small squares inside the shape. So, the area is 4 square units.

B UNITS OF AREA

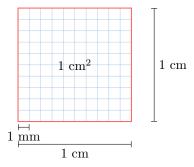

Discover: When we measure area, it is important to use **standard units** so that everyone gets the same measurement. Non-standard units, such as books or tiles of different sizes, can give different answers because they are not all the same size. For area, we use standard units like the **square centimeter** and the **square meter**.

Definition Units of Area -


• Square Kilometer (km²): A very large unit of area, about the size of a small town.


• Square Meter (m²): A larger unit of area, about the space it takes for you to lie down with your arms by your sides.

• Square Centimeter (cm²): A small unit of area, about the size of a big toe nail for a 6-year-old boy.



• Square Millimeter (mm²): A very small unit of area, about the size of a tiny dot made by a pencil.

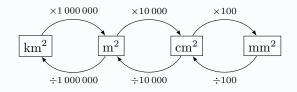
C CONVERSION OF AREA UNITS

Discover: Let's see how area units are related. Consider a square with an area of 1 cm^2 . Since 1 cm = 10 mm, each side of this square is 10 mm long.

Each small square is 1 mm². To find the area in mm², we multiply its length in mm by its width in mm:

$$1 cm^2 = 1 cm \times 1 cm$$
$$= 10 mm \times 10 mm$$
$$= 100 mm^2$$

So, 1 cm² is equal to 100 mm². The conversion factor is squared!


Proposition Conversion of Area Units .

Because we multiply two lengths to get an area, the conversion factors are squared.

- $1 \text{ cm}^2 = (10 \times 10) \text{ mm}^2 = 100 \text{ mm}^2$
- $1 \,\mathrm{m}^2 = (100 \times 100) \,\mathrm{cm}^2 = 10,000 \,\mathrm{cm}^2$
- $1 \text{ km}^2 = (1000 \times 1000) \text{ m}^2 = 1,000,000 \text{ m}^2$

Method Converting Using Multiplication or Division -

- Use multiplication to go from a larger unit to a smaller one (like square meters to square centimeters).
- Use division to go from a smaller unit to a larger one (like square centimeters to square meters).

Method Converting Using a Place Value Table -

For area, each unit in the place value table is split into two columns. Let's convert 10.5 m² to cm².

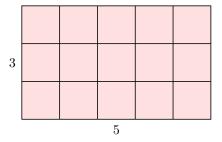
1. Draw the area conversion table. Each unit has two columns.

km^{2}		ha			m^2					cm^2		mm^2	

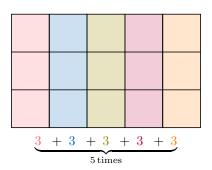
2. Place the number in the table. The rule is: the digit in the ones place goes into the right-hand column of the starting unit. For 10.5 m², the ones digit is 0, so it goes in the right-hand column of m². Then place the other digits in the neighbouring columns, keeping their order (tens to the left, decimal digits to the right).

	km^2	ha		m^2			m^2	m	m^2
ı			1	0	5				

3. Move the decimal point to the right side of your target unit's columns. Our target is cm². Fill any empty columns with zeros.


km^2	ha	m^2				cm^2		mm^2	
		1	0	5	0	0	0.		

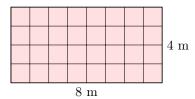
4. Read the final number. The decimal point is now at the far right.


So,
$$10.5 \text{ m}^2 = 105000 \text{ cm}^2$$
.

D AREA OF A RECTANGLE OR A SQUARE

Discover: Counting every single square to find the area can take a long time. Let's see if there is a shortcut. Consider a rectangle that is 5 units long and 3 units wide.

We can find its area by adding up the squares in each column.

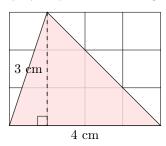

The area is $\underbrace{3 + 3 + 3 + 3 + 3}_{\text{5 times}} = 5 \times 3 = 15$ square units. This shows that we can find the area of a rectangle by simply multiplying its **length** by its **width**.

Proposition Area Formulas

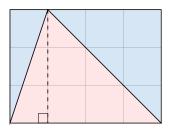
To find the area of a rectangle, multiply its length by its width. To find the area of a square, multiply the side length by itself.

Shape	Diagram	Area Formula
	$w = \frac{1}{2}$	
Rectangle	l	$A = l \times w$
Square	s	$A = s \times s$

Ex: Find the area of the rectangle:


Answer: This is a rectangle with length l=8 m and width w=4 m. Using the formula for the area of a rectangle:

$$A = l \times w$$
$$= 8 \times 4$$
$$= 32 \,\mathrm{m}^2$$


The area is 32 square meters (we read 32 m² as "32 square meters").

E AREA OF A TRIANGLE

Discover: To find the area of a triangle, we can cut it along its height to form two smaller triangles, then rearrange them to make a rectangle. Let's see how this works step by step with the triangle below:

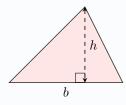
1. Cut the triangle along the height CH to form two smaller triangles. Rotate and rearrange these two triangles to form a rectangle:

2. The area of the rectangle is the length multiplied by the height: $4 \times 3 = 12 \,\mathrm{cm}^2$. Since the area of the rectangle is equal to twice the area of the original triangle, the area of the triangle is half the area of the rectangle:

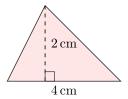
$$A_{\triangle} = rac{ ext{base} imes ext{height}}{2}$$

$$= rac{4 imes 3}{2}$$

$$= 6 ext{ cm}^2$$


Proposition Area of a Triangle -

The area of a triangle is found by multiplying the base by the height and dividing by 2:


Area of a triangle =
$$\frac{\text{base} \times \text{height}}{2}$$

$$A = \frac{b \times h}{2}$$

where b is the length of the base and h is the corresponding height.

Ex: Find the area of the triangle:

Answer:

$$A = \frac{b \times h}{2}$$
$$= \frac{4 \times 2}{2}$$
$$= 4 \text{ cm}^2$$

So, the area of the triangle is $4 \,\mathrm{cm}^2$.

F AREA OF A PARALLELOGRAM

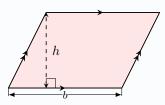
Discover: We can discover the formula for the area of a parallelogram by rearranging it into a rectangle.

1. Draw the height, which is a line from the top side to the bottom side that is perpendicular to the base:

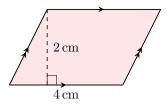
2. Cut the triangle on the right side:

3. Move the triangle to the left side to form a rectangle:

4. Now we have a rectangle with a length (base) of 4 cm and a height of 3 cm. The area of the parallelogram is the same as the area of this rectangle, which is the base times the height: $4 \times 3 = 12 \text{ cm}^2$.


Proposition Area of a Parallelogram ____

The area of a parallelogram is found by multiplying the base by the height:

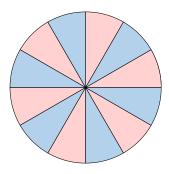

Area of a parallelogram = base \times height

$$A = b \times h$$
,

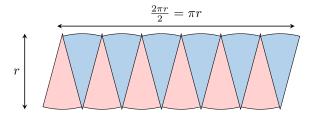
where b is the base and h is the height.

Ex: Find the area of the parallelogram:

Answer:


$$A = b \times h$$
$$= 4 \times 2$$
$$= 8 \,\mathrm{cm}^2$$

So, the area of the parallelogram is $8\,\mathrm{cm}^2$.


G AREA OF A CIRCLE

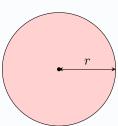
Discover: To find the area of a circle, we can divide it into smaller parts and rearrange them to approximate a parallelogram. Let's see how this works step by step:

1. Divide the circle into 12 equal parts, like slices of a pie:

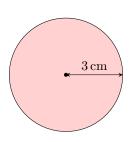
- 2. Imagine cutting these 12 parts from the circle.
- 3. Rearrange the parts by alternating them to form a shape that looks like a parallelogram:

4. The base of the parallelogram is approximately half the circumference of the circle (πr) , and its height is approximately the radius (r). So, the area of the circle is the area of the parallelogram:

$$A_{\text{circle}} = (\pi r) \times r$$
$$= \pi \times r \times r$$
$$= \pi r^{2}.$$


We read this as "pi r squared".

Proposition Area of a Circle -


The area of a circle is found by multiplying pi by the radius squared:

Area of a circle = $\pi \times \text{radius} \times \text{radius}$

$$A = \pi r \times r = \pi r^2$$

Ex: Find the area of the circle:

Answer:

$$A = \pi r^2$$
$$= \pi 3^2$$
$$\approx 28.3 \,\mathrm{cm}^2$$

H AREA FORMULAS

Proposition **Area Formulas**

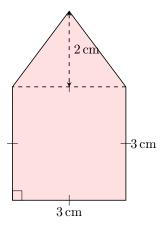
Here are the area formulas for some common shapes.

Name	Shape	Area
Rectangle		$A = l \times w$
Square		$A = s \times s$ $= s^2$
Parallelogram	b	$A = b \times h$
Triangle	b	$A = \frac{b \times h}{2}$
Circle		$A = \pi \times r \times r$ $= \pi r^2$

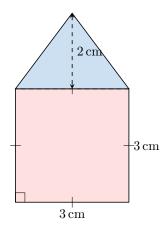
I AREA OF COMPOSITE FIGURES

Definition Composite Figure _

A $\operatorname{\mathbf{composite}}$ figure is made up of two or more simple geometric shapes, like rectangles, triangles, or circles, combined together.


8

Method Finding the Area of a Composite Figure


To find the area of a composite figure, follow these steps:

- 1. Divide the figure into simple, non-overlapping shapes, such as rectangles, triangles, or circles.
- 2. Find the area of each simpler shape using the appropriate formula.
- 3. Add the areas together to find the total area of the composite figure.

Ex: Find the area of the composite figure below, which is made up of a square and a triangle:

Answer:

$$A = \text{Area of square} + \text{Area of triangle}$$

$$= s \times s + \frac{b \times h}{2}$$

$$= 3 \times 3 + \frac{3 \times 2}{2}$$

$$= 9 + 3$$

$$=12\,\mathrm{cm}^2$$