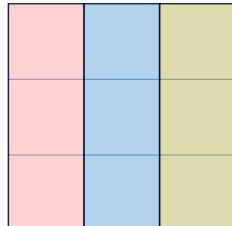


AREA FORMULAS

A AREA OF A RECTANGLE OR A SQUARE

A.1 FINDING AREAS OF SQUARES AND RECTANGLES

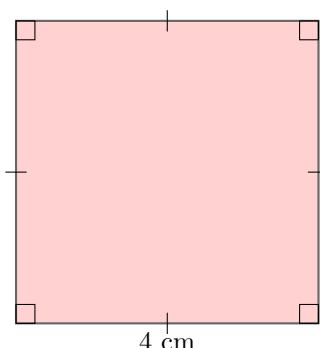
Ex 1: What is the area of the red square?


$$[9] \text{ cm}^2$$

Answer:

- Method 1: Use the formula

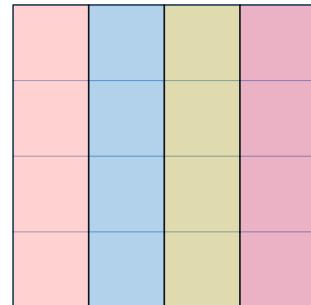
$$\begin{aligned} \text{Area} &= s \times s \\ &= 3 \times 3 \\ &= 9 \text{ cm}^2 \end{aligned}$$


- Method 2: Count the number of unit squares in each column

$$3 + 3 + 3$$

$$\begin{aligned} \text{Area} &= 3 + 3 + 3 \\ &= 3 \times 3 \\ &= 9 \text{ cm}^2 \end{aligned}$$

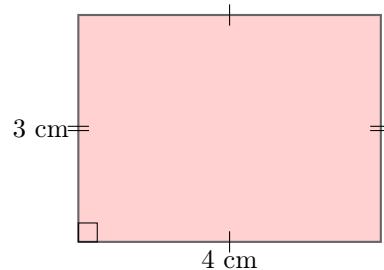
Ex 2: What is the area of the red square?


$$[16] \text{ cm}^2$$

Answer:

- Method 1: Use the formula

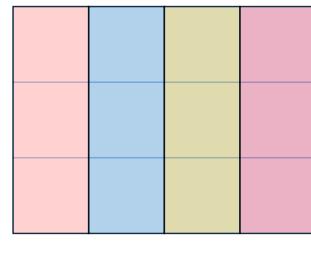
$$\begin{aligned} \text{Area} &= s \times s \\ &= 4 \times 4 \\ &= 16 \text{ cm}^2 \end{aligned}$$


- Method 2: Count the number of unit squares in each column

$$4 + 4 + 4 + 4$$

$$\begin{aligned} \text{Area} &= 4 + 4 + 4 + 4 \\ &= 4 \times 4 \\ &= 16 \text{ cm}^2 \end{aligned}$$

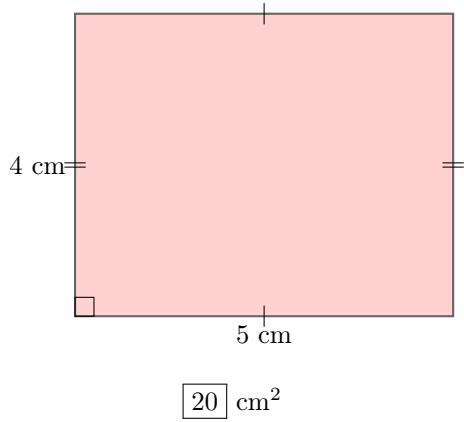
Ex 3: What is the area of the red rectangle?


$$[12] \text{ cm}^2$$

Answer:

- Method 1: Use the formula

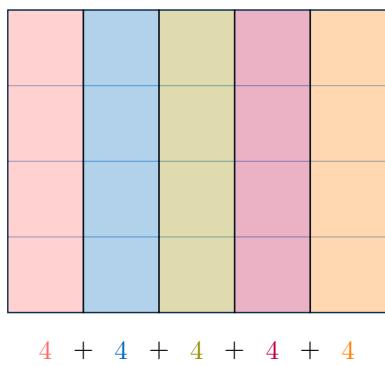
$$\begin{aligned} \text{Area} &= l \times w \\ &= 4 \times 3 \\ &= 12 \text{ cm}^2 \end{aligned}$$


- Method 2: Count the number of unit squares in each column

$$3 + 3 + 3 + 3$$

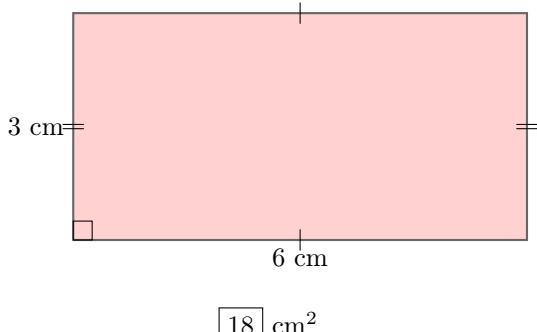
$$\begin{aligned} \text{Area} &= 3 + 3 + 3 + 3 \\ &= 4 \times 3 \\ &= 12 \text{ cm}^2 \end{aligned}$$

Ex 4: What is the area of the red rectangle?



Answer:

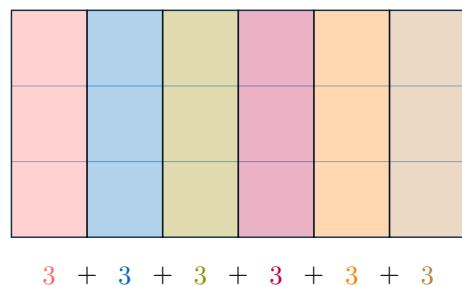
- Method 1: Use the formula


$$\begin{aligned}\text{Area} &= l \times w \\ &= 5 \times 4 \\ &= 20 \text{ cm}^2\end{aligned}$$

- Method 2: Count the number of unit squares in each column

$$\begin{aligned}\text{Area} &= 4 + 4 + 4 + 4 + 4 \\ &= 5 \times 4 \\ &= 20 \text{ cm}^2\end{aligned}$$

Ex 5: What is the area of the red rectangle?

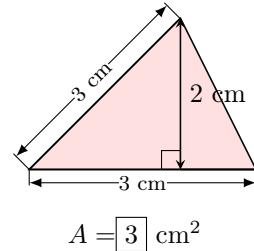


Answer:

- Method 1: Use the formula

$$\begin{aligned}\text{Area} &= l \times w \\ &= 6 \times 3 \\ &= 18 \text{ cm}^2\end{aligned}$$

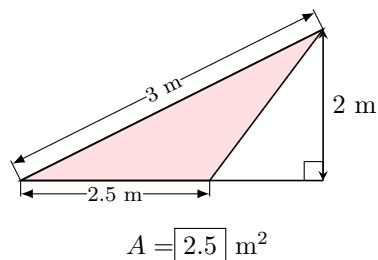
- Method 2: Count the number of unit squares in each column



$$\begin{aligned}\text{Area} &= 3 + 3 + 3 + 3 + 3 + 3 \\ &= 6 \times 3 \\ &= 18 \text{ cm}^2\end{aligned}$$

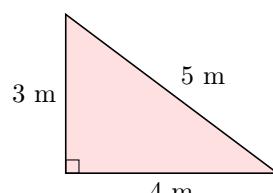
B AREA OF A TRIANGLE

B.1 FINDING AREAS OF TRIANGLES


Ex 6: Find the area of the figure

Answer:

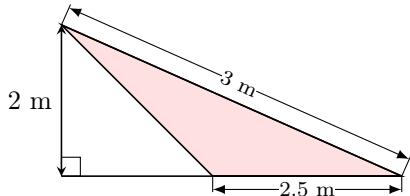
$$\begin{aligned}A &= \frac{b \times h}{2} \\ &= \frac{3 \text{ cm} \times 2 \text{ cm}}{2} \\ &= 3 \text{ cm}^2\end{aligned}$$


Ex 7: Find the area of the figure

Answer:

$$\begin{aligned}A &= \frac{b \times h}{2} \\ &= \frac{2.5 \text{ m} \times 2 \text{ m}}{2} \\ &= 2.5 \text{ m}^2\end{aligned}$$

Ex 8: Find the area of the figure

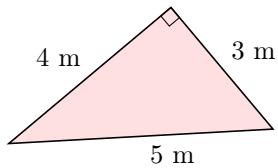

$$A = \boxed{6} \text{ m}^2$$

Answer:

$$\begin{aligned} A &= \frac{b \times h}{2} \\ &= \frac{4 \text{ m} \times 3 \text{ m}}{2} \\ &= 6 \text{ m}^2 \end{aligned}$$

Answer:

Ex 9: Find the area of the figure



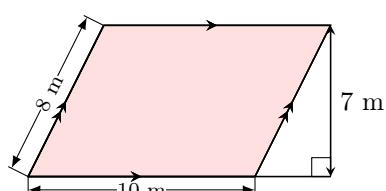
$$A = \boxed{2.5} \text{ m}^2$$

Answer:

$$\begin{aligned} A &= \frac{b \times h}{2} \\ &= \frac{2.5 \text{ m} \times 2 \text{ m}}{2} \\ &= 2.5 \text{ m}^2 \end{aligned}$$

Ex 10: Find the area of the figure

$$A = \boxed{6} \text{ m}^2$$

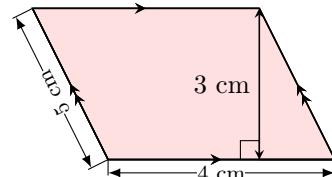

Answer:

$$\begin{aligned} A &= \frac{b \times h}{2} \\ &= \frac{4 \text{ m} \times 3 \text{ m}}{2} \\ &= 6 \text{ m}^2 \end{aligned}$$

C AREA OF A PARALLELOGRAM

C.1 FINDING AREAS OF PARALLELOGRAMS

Ex 11: Find the area of the figure

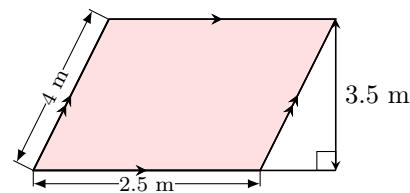


$$A = \boxed{70} \text{ m}^2$$

Answer:

$$\begin{aligned} A &= b \times h \\ &= 10 \text{ m} \times 7 \text{ m} \\ &= 70 \text{ m}^2 \end{aligned}$$

Ex 12: Find the area of the figure

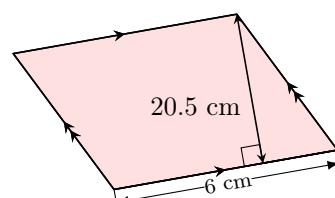


$$A = \boxed{12} \text{ cm}^2$$

Answer:

$$\begin{aligned} A &= b \times h \\ &= 4 \text{ cm} \times 3 \text{ cm} \\ &= 12 \text{ cm}^2 \end{aligned}$$

Ex 13: Find the area of the figure.



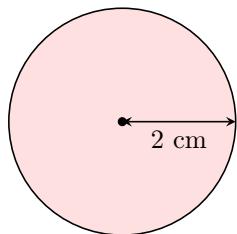
$$A = \boxed{8.75} \text{ m}^2$$

Answer:

$$\begin{aligned} A &= b \times h \\ &= 2.5 \text{ m} \times 3.5 \text{ m} \\ &= 8.75 \text{ m}^2 \end{aligned}$$

Ex 14: Find the area of the figure.

$$A = \boxed{123} \text{ cm}^2$$

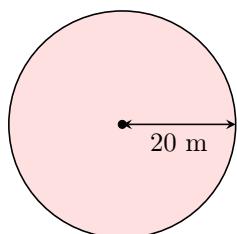

Answer:

$$\begin{aligned} A &= b \times h \\ &= 6 \text{ cm} \times 20.5 \text{ cm} \\ &= 123 \text{ cm}^2 \end{aligned}$$

D AREA OF A CIRCLE

D.1 FINDING AREAS OF CIRCLES

Ex 15: Find the area of the figure (round to 1 decimal place)

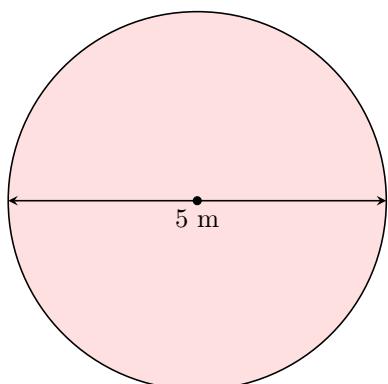


$$A \approx 12.6 \text{ cm}^2$$

Answer:

$$\begin{aligned} A &= \pi \times r \times r \\ &= \pi \times 2 \text{ cm} \times 2 \text{ cm} \\ &= 12.56637\ldots \text{ cm}^2 \\ &\approx 12.6 \text{ cm}^2 \end{aligned}$$

Ex 16: Find the area of the figure (round to 1 decimal place)



$$A \approx 1256.6 \text{ m}^2$$

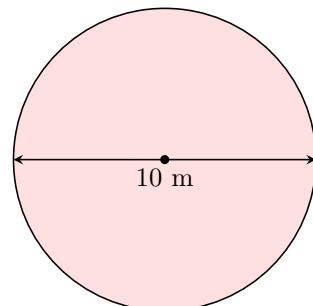
Answer:

$$\begin{aligned} A &= \pi \times r \times r \\ &= \pi \times 20 \text{ m} \times 20 \text{ m} \\ &= 1256.63706\ldots \text{ m}^2 \\ &\approx 1256.6 \text{ m}^2 \end{aligned}$$

Ex 17: Find the area of the figure (round to 1 decimal place)

$$A \approx 19.6 \text{ m}^2$$

Answer:


- The radius is half of the diameter.

$$\begin{aligned} r &= \frac{d}{2} \\ &= \frac{5}{2} \\ &= 2.5 \text{ m} \end{aligned}$$

- The area of the circle is

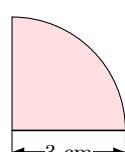
$$\begin{aligned} A &= \pi \times r \times r \\ &= \pi \times 2.5 \times 2.5 \\ &\approx 19.6 \text{ m}^2 \end{aligned}$$

Ex 18: Find the area of the figure (round to 1 decimal place)

$$A \approx 78.5 \text{ m}^2$$

Answer:

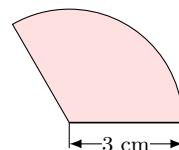
- The radius is half of the diameter.


$$\begin{aligned} r &= \frac{d}{2} \\ &= \frac{10}{2} \\ &= 5 \text{ m} \end{aligned}$$

- The area of the circle is

$$\begin{aligned} A &= \pi \times r \times r \\ &= \pi \times 5 \times 5 \\ &\approx 78.5 \text{ m}^2 \end{aligned}$$

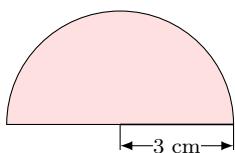
D.2 FINDING AREA OF CIRCULAR SECTORS


Ex 19: Find the area of the quarter circle: (Round to 1 decimal place)

$$A = 7.1 \text{ cm}^2$$

Answer: The area of the quarter circle is:

$$\begin{aligned} A &= \frac{\text{angle}}{360} \times \pi \times \text{radius} \times \text{radius} \\ &= \frac{90}{360} \times \pi \times 3^2 \\ &= \frac{1}{4} \times \pi \times 9 \\ &\approx 7.1 \text{ cm}^2 \quad (\text{rounded to 1 decimal place}) \end{aligned}$$

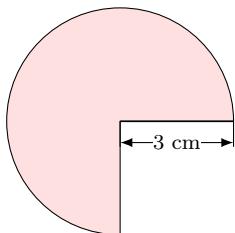


$$A = 9.4 \text{ cm}^2$$

Answer: The area of the one-third circle is:

$$\begin{aligned} A &= \frac{\text{angle}}{360} \times \pi \times \text{radius} \times \text{radius} \\ &= \frac{120}{360} \times \pi \times 3^2 \\ &= \frac{1}{3} \times \pi \times 9 \\ &\approx 9.4 \text{ cm}^2 \quad (\text{rounded to 1 decimal place}) \end{aligned}$$

Ex 20: Find the area of the half circle: (Round to 1 decimal place)



$$A = 14.1 \text{ cm}^2$$

Answer: The area of the half circle is:

$$\begin{aligned} A &= \frac{\text{angle}}{360} \times \pi \times \text{radius} \times \text{radius} \\ &= \frac{180}{360} \times \pi \times 3^2 \\ &= \frac{1}{2} \times \pi \times 9 \\ &\approx 14.1 \text{ cm}^2 \quad (\text{rounded to 1 decimal place}) \end{aligned}$$

Ex 21: Find the area of the three-quarter circle: (Round to 1 decimal place)

$$A = 21.2 \text{ cm}^2$$

Answer: The area of the three-quarter circle is:

$$\begin{aligned} A &= \frac{\text{angle}}{360} \times \pi \times \text{radius} \times \text{radius} \\ &= \frac{270}{360} \times \pi \times 3^2 \\ &= \frac{3}{4} \times \pi \times 9 \\ &\approx 21.2 \text{ cm}^2 \quad (\text{rounded to 1 decimal place}) \end{aligned}$$

Ex 22: Find the area of the one-third circle: (Round to 1 decimal place)

E AREA FORMULAS

E.1 SOLVING PROBLEMS

Ex 23: A rectangular terrace is 8 m long and 5 m wide. The tiling costs 20 dollars per square meter. What is the area of the terrace?

$$40 \text{ m}^2$$

What is the cost to tile the terrace?

$$800 \text{ dollars}$$

Answer:

- The area of the rectangular terrace is:

$$\begin{aligned} A &= \text{length} \times \text{width} \\ &= 8 \text{ m} \times 5 \text{ m} \\ &= 40 \text{ m}^2 \end{aligned}$$

- The cost to tile the terrace is calculated by:

$$\begin{aligned} \text{Cost} &= \text{Area} \times \text{cost per m}^2 \\ &= 40 \text{ m}^2 \times 20 \text{ dollars per m}^2 \\ &= 800 \text{ dollars} \end{aligned}$$

Ex 24: A triangular garden has a base of 12 m and a height of 8 m. The cost to plant grass is 5 dollars per square meter. What is the area of the garden?

$$48 \text{ m}^2$$

What is the cost to plant grass in the garden?

$$240 \text{ dollars}$$

Answer:

- The area of the triangular garden is:

$$\begin{aligned} A &= \frac{\text{base} \times \text{height}}{2} \\ &= \frac{12 \text{ m} \times 8 \text{ m}}{2} \\ &= 48 \text{ m}^2 \end{aligned}$$

- The cost to plant grass in the garden is calculated by:

$$\begin{aligned}\text{Cost} &= \text{Area} \times \text{cost per m}^2 \\ &= 48 \text{ m}^2 \times 5 \text{ dollars per m}^2 \\ &= 240 \text{ dollars}\end{aligned}$$

50 m²

What is the cost to plant flowers in the garden? (Round to the nearest tenth)

500 dollars

Ex 25: A rectangular wall is 8 m long and 5 m high. The cost to paint the wall is 20 dollars per square meter.

What is the area of the wall?

40 m²

What is the cost to paint the wall?

800 dollars

Answer:

- The area of the rectangular wall is:

$$\begin{aligned}A &= \text{length} \times \text{height} \\ &= 8 \text{ m} \times 5 \text{ m} \\ &= 40 \text{ m}^2\end{aligned}$$

- The cost to paint the wall is calculated by:

$$\begin{aligned}\text{Cost} &= \text{Area} \times \text{cost per m}^2 \\ &= 40 \text{ m}^2 \times 20 \text{ dollars per m}^2 \\ &= 800 \text{ dollars}\end{aligned}$$

Ex 26: A triangular roof has a base of 10 m and a height of 6 m. The cost to cover the roof with wood is 15 dollars per square meter.

What is the area of the roof?

30 m²

What is the cost to cover the roof with wood?

450 dollars

Answer:

- The area of the triangular roof is:

$$\begin{aligned}A &= \frac{\text{base} \times \text{height}}{2} \\ &= \frac{10 \text{ m} \times 6 \text{ m}}{2} \\ &= 30 \text{ m}^2\end{aligned}$$

- The cost to cover the roof with wood is calculated by:

$$\begin{aligned}\text{Cost} &= \text{Area} \times \text{cost per m}^2 \\ &= 30 \text{ m}^2 \times 15 \text{ dollars per m}^2 \\ &= 450 \text{ dollars}\end{aligned}$$

Ex 27: A circular garden has a radius of 4 m. The cost to plant flowers is 10 dollars per square meter.

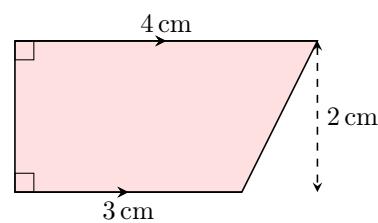
What is the area of the garden? (Round to the nearest integer)

50 m²

Answer:

- The area of the circular garden is:

$$\begin{aligned}A &= \pi \times \text{radius} \times \text{radius} \\ &= \pi \times 4 \text{ m} \times 4 \text{ m} \\ &= 16\pi \text{ m}^2 \\ &\approx 50.27 \text{ m}^2 \\ &\approx 50 \text{ m}^2 \quad (\text{rounded to the nearest integer})\end{aligned}$$

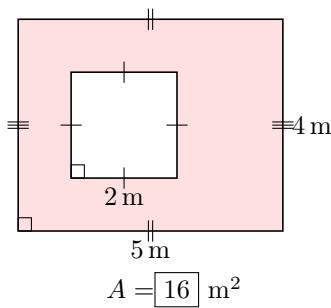

- The cost to plant flowers in the garden is calculated using the exact area:

$$\begin{aligned}\text{Cost} &= \text{Area} \times \text{cost per m}^2 \\ &= 16\pi \text{ m}^2 \times 10 \text{ dollars per m}^2 \\ &\approx 502.65 \text{ dollars} \\ &\approx 500 \text{ dollars} \quad (\text{rounded to the nearest tenth})\end{aligned}$$

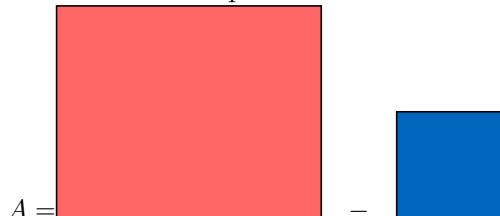
F AREA OF COMPOSITE FIGURES

F.1 FINDING AREAS OF COMPOSITE FIGURES

Ex 28: Find the area of the figure:

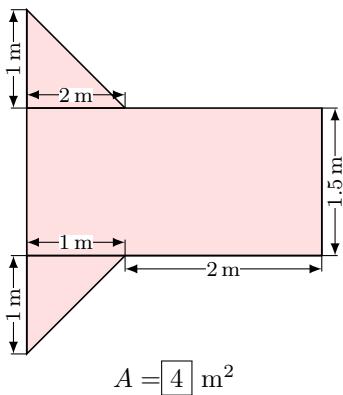

$$A = 7 \text{ cm}^2$$

Answer: The area of the figure is calculated by subtracting the area of the triangle from the area of the rectangle:



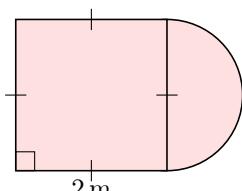
$$\begin{aligned}A &= \text{area of rectangle} - \text{area of triangle} \\ &= (4 \times 2) - \frac{1 \times 2}{2} \\ &= 8 - 1 \\ &= 7 \text{ cm}^2\end{aligned}$$

Ex 29: Find the area of the figure:



Answer: The area of the figure is calculated by subtracting the area of the small square from the area of the large rectangle:

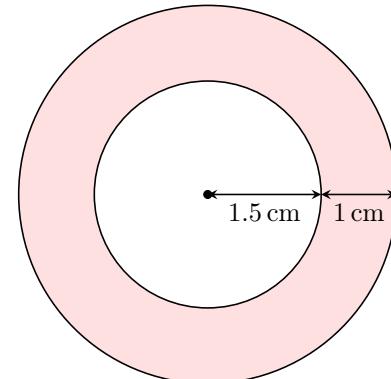
$$\begin{aligned} A &= \text{area of large rectangle} - \text{area of small square} \\ &= (5 \times 4) - (2 \times 2) \\ &= 20 - 4 \\ &= 16 \text{ m}^2 \end{aligned}$$


Ex 30: Find the area of the figure:

Answer: The area of the figure is calculated by adding the area of the rectangle and the areas of the two triangles:

$$\begin{aligned} A &= \text{area of rectangle} + 2 \times \text{area of triangle} \\ &= (2 \times 1.5) + 2 \times \frac{1 \times 1}{2} \\ &= 3 + 1 \\ &= 4 \text{ m}^2 \end{aligned}$$

Ex 31: Calculate the area of the figure:

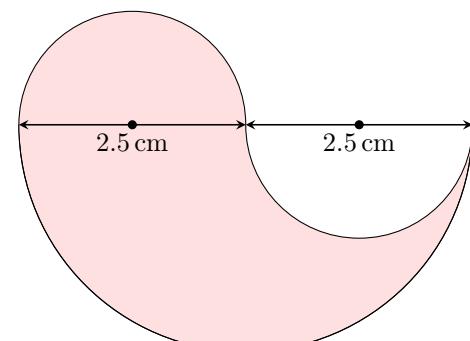


$A = 3.43 \text{ m}^2$ (round to 2 decimal places)

Answer: The area of the figure is calculated by adding the area of the square and the area of the semi-circle:

$$\begin{aligned} A &= \text{area of square} + \text{area of semi-circle} \\ &= (2 \times 2) + \frac{1}{2} \times \pi \times 1 \times 1 \\ &\approx 5.57 \text{ m}^2 \end{aligned}$$

Ex 32: Calculate the area of the figure: (Round to 2 decimal places)



$A = 12.56 \text{ cm}^2$

Answer: The area of the figure is calculated by subtracting the area of the small circle from the area of the large circle:

$$\begin{aligned} A &= \text{area of large circle} - \text{area of small circle} \\ &= (\pi \times 2.5 \times 2.5) - (\pi \times 1.5 \times 1.5) \\ &= 6.25\pi - 2.25\pi \\ &= 4\pi \\ &\approx 12.56 \text{ cm}^2 \text{ (rounded to 2 decimal places)} \end{aligned}$$

Ex 33: Calculate the area of the figure: (Round to 2 decimal places)

$A = 9.82 \text{ cm}^2$

Answer: The area of the figure is the area of the large semi-circle (since the small semi-circles cancel each other out):

$$\begin{aligned} A &= \text{area of large semi-circle} - \text{area of small semi-circle} + \text{area of semi-circle} \\ &= \text{area of large semi-circle} \\ &= \frac{1}{2} \times \pi \times 2.5 \times 2.5 \\ &\approx 9.82 \text{ cm}^2 \text{ (rounded to 2 decimal places)} \end{aligned}$$