ALGEBRA

A DEFINITIONS

Definition Constant

A constant is a number.

Ex: $0, 3, \pi$

Definition Variable —

A variable is a quantity which we represent by a letter.

Ex:

The variable x is the number of marbles inside the cup.

Definition Expression —

An expression is an algebraic form consisting of constants, variables, and operation signs such as $+,-,\times,\div$ and $\sqrt{\ }$.

 $\mathbf{E}\mathbf{x}$:

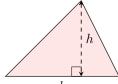
A cup contains x marbles. Next to the cup, there are 2 marbles outside. The expression for the number of marbles is

$$x + 2$$

Definition **Equation** -

An equation is a mathematical statement consisting of two expressions, the left-hand side and the right-hand side, separated by an equal sign =.

 $\mathbf{E}\mathbf{x}$:



A cup contains x marbles. The equation for the number of marbles is

$$x + 2 = 8$$

Definition Formula —

A formula is an equation, often related to the real world, to physics or to geometry.

 $\mathbf{Ex:}$ For a triangle:

$$^{\Delta}$$
, $A = \frac{b \times h}{2}$ is the formula for the area.

B NOTATIONS

Definition **Product notation** -

We can omit the \times sign when it is followed by a variable or a parenthesis.

Ex:

- \bullet $2 \times x = 2x$
- $2 \times (L+l) = 2(L+l)$

Definition Repeated addition

$$\overbrace{x + x + \ldots + x}^{n \text{ terms}} = n \times x$$

 $\mathbf{E}\mathbf{x}$:

Each cup contains x marbles. Simplify the expression for the number of marbles:

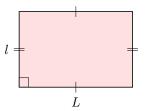
$$x + x + 1 + 1 + 1$$

Answer:

$$x + x + 1 + 1 + 1 = 2x + 3$$

Definition Repeated multiplication -

$$\underbrace{x \times x \times \dots \times x}^{n \text{ factors}} = x^n$$


Ex: For a circle: , simplify the formula for the area $A = \pi \times r \times r$.

Answer:

$$A = \pi \times r \times r$$
$$= \pi r^2$$

C IDENTITY

Discover: Three students were asked to find the formula for the perimeter of the rectangle:

They wrote:

- Su: P = 2(l + L)
- Louis: P = l + L + l + L
- Hugo: P = 2l + 2L

Which students are correct?

Answer: They are all correct. These three expressions 2(l+L), l+L+l+L and 2l+2L produce the same result for the perimeter of the rectangle for all values of l and L. They are called identities.

Definition Identity

An identity is an equality between two expressions such that their evaluations produce the same value for all values of the variables.

Identities are fundamental in algebra: they allow us to transform and simplify expressions and are the foundation for solving equations and manipulating formulas.

Proposition Properties of Multiplying by 1 and 0

$$1 \times x = x$$
 and $0 \times x = 0$

Proposition Commutativity Identities

$$a + b = b + a$$
 and $a \times b = b \times a$

Proposition Associativity Identities —

$$(a+b)+c=a+(b+c)$$
 and $(a \times b) \times c=a \times (b \times c)$

Ex: Show that l + L + l + L = 2l + 2L.

Answer:

$$l+L+l+L=l+l+L+L$$
 (collecting terms)
= $2l+2L$ (repeated addition)

Method Simplifying by Collecting Like Terms —

Simplifying an expression by collecting like terms involves combining terms that have the same variables raised to the same powers.

- 1. Identify like terms: Like terms are terms that have the same variable(s) raised to the same power. For example, 3x and 5x are like terms, but 3x and $3x^2$ are not.
- 2. Combine like terms: Add or subtract the coefficients (numerical parts) of the like terms. The variable part remains the same.

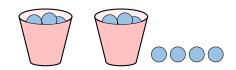
Ex: Simplify the expression: 2x + 4 + x - 2

Answer:

$$2x + 4 + x - 2 = 2x + 4 + x - 2$$
 (identifying like terms)
= $(2+1)x + 4 - 2$ (combining like terms)
= $3x + 2$ (simplifying)

D SUBSTITUTING

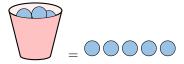
Definition Substituting


Substituting is replacing a variable in an expression or equation with a specific value.

To avoid confusion with signs, especially when substituting negative values, we usually write substitutions in parentheses.

Method Evaluating

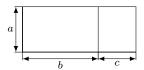
To evaluate an expression, substitute a number for each variable and perform the arithmetic operations.


Ex:

Each cup contains x marbles. The expression for the total number of marbles is

$$2x + 4$$

Evaluate this expression when x = 5 (meaning there are 5 marbles in each cup):


Answer:

$$2x + 4 = 2 \times (5) + 4 \quad \text{(substituting } x \text{ by } 5\text{)}$$
$$= 10 + 4$$
$$= 14$$

There are 14 marbles.

E DISTRIBUTIVE IDENTITIES

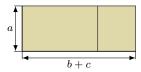
Discover: The large rectangle below is split into two smaller rectangles. Find the total area of the large rectangle in two different ways.



Answer:

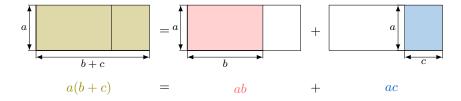
• Method 1: Sum of the parts

The total area is the sum of the areas of the two smaller rectangles.


Total Area = Area
$$1 + \text{Area } 2 = ab + ac$$

• Method 2: Area of the whole

The total length of the base is b + c and the height is a.


Total Area =
$$a(b+c)$$

Since both methods calculate the same total area, the two expressions must be equal. This gives us the identity:

$$a(b+c) = ab + ac$$

This important rule is known as the distributive law.

Proposition **Distributive Law**

Multiplication is distributive over addition and subtraction:

• Addition:

$$a(b+c) = ab + ac$$

• Subtraction:

$$a(b-c) = ab - ac$$

Ex: Show that $2(\ell + L) = 2\ell + 2L$.

Answer:

$$2(\ell + L) = 2 \times \ell + 2 \times L
= 2\ell + 2L$$

So
$$2(\ell + L) = 2\ell + 2L$$
.

Definition **Expanding** -

Expanding is the process of using the distributive law to write a product with parentheses as a sum (or difference) of terms.

Ex: Expand 2(2x+3).

Answer:

$$2(2x+3) = 2 \times 2x + 2 \times 3$$

= $4x + 6$

So 2(2x+3) = 4x+6.