AFFINE TRANSFORMATIONS

A LINEAR TRANSFORMATIONS

A.1 APPLYING LINEAR TRANSFORMATIONS

Ex 1: Find the image of the point P(3,-2) under the transformation defined by the matrix $\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$.

$$P'(\boxed{8}, \boxed{-5})$$

Answer: Let $\mathbf{p} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ be the position vector of P.

$$\mathbf{p}' = \mathbf{A}\mathbf{p}$$

$$= \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$= \begin{pmatrix} 2(3) + (-1)(-2) \\ 1(3) + 4(-2) \end{pmatrix}$$

$$= \begin{pmatrix} 6 + 2 \\ 3 - 8 \end{pmatrix}$$

$$= \begin{pmatrix} 8 \\ -5 \end{pmatrix}$$

The image is P'(8, -5).

Ex 2: Find the image of the point Q(4,1) under the transformation defined by the matrix $\mathbf{B} = \begin{pmatrix} -1 & 2 \\ 3 & 0 \end{pmatrix}$.

$$Q'(\boxed{-2},\boxed{12})$$

Answer: Let $\mathbf{q} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ be the position vector of Q.

$$\mathbf{q}' = \mathbf{B}\mathbf{q}$$

$$= \begin{pmatrix} -1 & 2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -1(4) + 2(1) \\ 3(4) + 0(1) \end{pmatrix}$$

$$= \begin{pmatrix} -4 + 2 \\ 12 + 0 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 12 \end{pmatrix}$$

The image is Q'(-2, 12).

Ex 3: Find the image of the point R(-2,5) under the transformation defined by the matrix $\mathbf{M} = \begin{pmatrix} 1 & 3 \\ -2 & 2 \end{pmatrix}$.

Answer: Let $\mathbf{r} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$ be the position vector of R.

$$\mathbf{r}' = \mathbf{Mr}$$

$$= \begin{pmatrix} 1 & 3 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1(-2) + 3(5) \\ -2(-2) + 2(5) \end{pmatrix}$$

$$= \begin{pmatrix} -2 + 15 \\ 4 + 10 \end{pmatrix}$$

$$= \begin{pmatrix} 13 \\ 14 \end{pmatrix}$$

The image is R'(13, 14).

Ex 4: Find the image of the point S(2,3) under the transformation defined by the matrix $\mathbf{C} = \begin{pmatrix} 4 & -2 \\ 1 & 3 \end{pmatrix}$.

$$S'(\boxed{2},\boxed{11})$$

Answer: Let $\mathbf{s} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ be the position vector of S.

$$\mathbf{s}' = \mathbf{C}\mathbf{s}$$

$$= \begin{pmatrix} 4 & -2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 4(2) + (-2)(3) \\ 1(2) + 3(3) \end{pmatrix}$$

$$= \begin{pmatrix} 8 - 6 \\ 2 + 9 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 11 \end{pmatrix}$$

The image is S'(2,11).

B STANDARD TRANSFORMATIONS

LINEAR

B.1 FINDING THE MATRIX REPRESENTATION

Ex 5: Find the matrix representing a vertical stretch by a factor of 4.

$$\mathbf{S} = \begin{pmatrix} \boxed{1} & \boxed{0} \\ \boxed{0} & \boxed{4} \end{pmatrix}$$

Answer: A vertical stretch by factor k corresponds to the matrix $\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$.

Here, k = 4, so the matrix is:

$$\mathbf{S} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$$

Ex 6: Find the matrix representing a horizontal stretch by a factor of 3.

$$\mathbf{S} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$$

Here, k = 3, so the matrix is:

$$\mathbf{S} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$$

Ex 7: Find the matrix representing a reflection in the x-axis.

$$\mathbf{M} = \begin{pmatrix} \boxed{1} & \boxed{0} \\ \boxed{0} & \boxed{-1} \end{pmatrix}$$

Answer: A reflection in the x-axis maps $(1,0) \rightarrow (1,0)$ and $(0,1) \rightarrow$

The matrix is:

$$\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Ex 8: Find the matrix representing a reflection in the y-axis.

$$\mathbf{M} = \begin{pmatrix} \boxed{-1} & \boxed{0} \\ \boxed{0} & \boxed{1} \end{pmatrix}$$

Answer: A reflection in the y-axis maps $(1,0) \rightarrow (-1,0)$ and $(0,1) \to (0,1).$

The matrix is:

$$\mathbf{M} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Ex 9: Find the matrix representing a reflection in the line y = x.

$$\mathbf{M} = \begin{pmatrix} \boxed{0} & \boxed{1} \\ \boxed{1} & \boxed{0} \end{pmatrix}$$

Answer: A reflection in the line y = x swaps the coordinates: $(1,0) \to (0,1)$ and $(0,1) \to (1,0)$.

The matrix is:

$$\mathbf{M} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Find the matrix representing an enlargement (homothety) centered at the origin with a scale factor of 2.

$$\mathbf{H} = \begin{pmatrix} \boxed{2} & \boxed{0} \\ \boxed{0} & \boxed{2} \end{pmatrix}$$

Answer: An enlargement centered at the origin with scale factor k corresponds to the matrix $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$

Here, k = 2, so the matrix is:

$$\mathbf{H} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Ex 11: Find the matrix representing a rotation of $\frac{\pi}{2}$ radians anti-clockwise about the origin.

$$\mathbf{R} = \begin{pmatrix} \boxed{0} & \boxed{-1} \\ \boxed{1} & \boxed{0} \end{pmatrix}$$

Answer: A horizontal stretch by factor k corresponds to the matrix Answer: A rotation of angle θ anti-clockwise about the origin is represented by the matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Here, $\theta = \frac{\pi}{2}$. Since $\cos(\frac{\pi}{2}) = 0$ and $\sin(\frac{\pi}{2}) = 1$, the matrix is:

$$\mathbf{R} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

MCQ 12: The transformation T is a reflection in the line $y = x\sqrt{3}$.

Find the matrix **T** that represents this transformation.

$$\Box \ \mathbf{T} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$\boxtimes \mathbf{T} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

$$\square \mathbf{T} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$$

$$\Box \ \mathbf{T} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

Answer: The matrix for a reflection in the line $y = (\tan \theta)x$ is given by:

$$\mathbf{T} = \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}$$

1. Identify the angle θ : The equation is $y = x\sqrt{3}$. The gradient is $\tan \theta = \sqrt{3}$.

$$\theta = \arctan(\sqrt{3}) = 60^{\circ}$$
 (or $\frac{\pi}{3}$ radians).

2. Calculate 2θ :

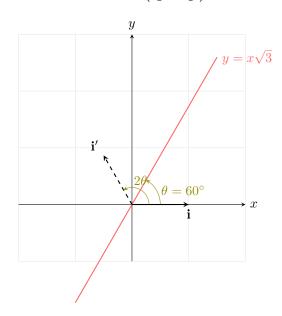
$$2\theta = 120^{\circ}$$
 (or $\frac{2\pi}{3}$ radians).

3. Substitute into the matrix

$$\mathbf{T} = \begin{pmatrix} \cos(120^\circ) & \sin(120^\circ) \\ \sin(120^\circ) & -\cos(120^\circ) \end{pmatrix}$$

Since $\cos(120^{\circ}) = -\frac{1}{2}$ and $\sin(120^{\circ}) = \frac{\sqrt{3}}{2}$:

$$\mathbf{T} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$



MCQ 13: The transformation T is a reflection in the line $y = -x\sqrt{3}$.

Find the matrix ${f T}$ that represents this transformation.

$$\Box \ \mathbf{T} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

$$\Box \mathbf{T} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$\boxtimes \mathbf{T} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

$$\Box \mathbf{T} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

Answer: The matrix for a reflection in the line $y = (\tan \theta)x$ is given by:

$$\mathbf{T} = \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}$$

1. Identify the angle θ : The equation is $y = -x\sqrt{3}$. The gradient is $\tan \theta = -\sqrt{3}$.

$$\theta = \arctan(-\sqrt{3}) = -60^{\circ}$$
 (or $-\frac{\pi}{3}$ radians).

2. Calculate 2θ :

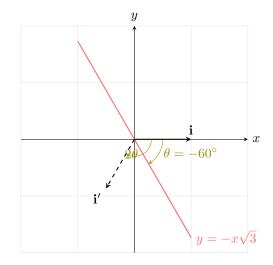
$$2\theta = -120^{\circ}$$
 (or $-\frac{2\pi}{3}$ radians).

3. Substitute into the matrix:

$$\mathbf{T} = \begin{pmatrix} \cos(-120^\circ) & \sin(-120^\circ) \\ \sin(-120^\circ) & -\cos(-120^\circ) \end{pmatrix}$$

Since $\cos(-120^{\circ}) = -\frac{1}{2}$ and $\sin(-120^{\circ}) = -\frac{\sqrt{3}}{2}$:

$$\mathbf{T} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -(-\frac{1}{2}) \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$



B.2 APPLYING TRANSFORMATIONS

STANDARD

LINEAR

Ex 14: Find the image of the point A(2,5) under a reflection in the x-axis.

$$A'(2, -5)$$

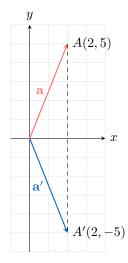
Answer: The matrix for reflection in the x-axis is $\mathbf{M}_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

$$\mathbf{a}' = \mathbf{M}_x \mathbf{a}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$

Alternatively, recall that reflection in the x-axis maps $(x, y) \rightarrow (x, -y)$, so $(2, 5) \rightarrow (2, -5)$.



Ex 15: Find the image of the point A(2,0) under a rotation of $\frac{\pi}{4}$ radians (45°) anti-clockwise about the origin.

$$A'(\boxed{\sqrt{2}},\boxed{\sqrt{2}})$$

Answer: The matrix for a rotation of angle θ is $\mathbf{R}_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

For $\theta = \frac{\pi}{4}$, we have $\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$ and $\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$.

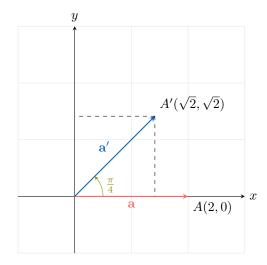
$$\mathbf{a}' = \mathbf{R}_{\frac{\pi}{4}} \mathbf{a}$$

$$= \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\sqrt{2}}{2}(2) - 0 \\ \frac{\sqrt{2}}{2}(2) + 0 \end{pmatrix}$$

$$= \begin{pmatrix} \sqrt{2} \\ \sqrt{2} \end{pmatrix}$$

The image is $A'(\sqrt{2}, \sqrt{2})$.



Ex 16: Find the image of the point A(3,4) under a reflection in the y-axis.

$$A'([-3], [4])$$

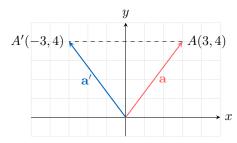
Answer: The matrix for reflection in the y-axis is $\mathbf{M}_y = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

$$\mathbf{a}' = \mathbf{M}_y \mathbf{a}$$

$$= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$= \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

Alternatively, recall that reflection in the y-axis maps $(x, y) \rightarrow (-x, y)$, so $(3, 4) \rightarrow (-3, 4)$.



Ex 17: Find the image of the point A(1,2) under an enlargement centered at the origin with a scale factor of 3.

$$A'(\boxed{3}, \boxed{6})$$

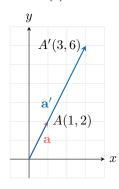
Answer: The matrix for an enlargement with scale factor k=3 is

$$\mathbf{S} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}.$$

$$\mathbf{a}' = \mathbf{S}\mathbf{a}$$

$$= \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$



Ex 18: Find the image of the point A(4,-1) under a rotation of π radians (180°) about the origin.

$$A'(\boxed{-4},\boxed{1})$$

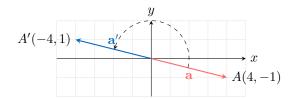
Answer: The matrix for rotation of π is $\mathbf{R}_{\pi} = \begin{pmatrix} \cos \pi & -\sin \pi \\ \sin \pi & \cos \pi \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

$$\mathbf{a}' = \mathbf{R}_{\pi} \mathbf{a}$$

$$= \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

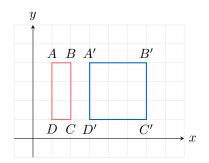
$$= \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

This corresponds to a point reflection in the origin: $(x,y) \rightarrow (-x,-y)$.



B.3 IDENTIFYING THE TRANSFORMATION

Ex 19: A linear transformation maps rectangle ABCD onto square A'B'C'D'.



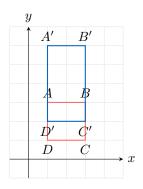
- 1. Identify the transformation.
- 2. Write down the transformation equation in the form $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Answer:

1. Identify the transformation:

- The rectangle ABCD has width 2-1=1 and height 4-1=3.
- The square A'B'C'D' has width 6-3=3 and height 4-1=3
- The height remains unchanged, but the width is multiplied by 3. This indicates a horizontal stretch by scale factor k = 3.
- After stretching horizontally by factor 3, point D(1,1) would move to (3,1), which matches D'.
- Therefore, the transformation is a horizontal stretch with scale factor 3.
- 2. Since it is a horizontal stretch by factor 3, the matrix is $\mathbf{A} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$. The equation is $\mathbf{x}' = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}$.

Ex 20: A linear transformation maps square ABCD onto rectangle A'B'C'D'.



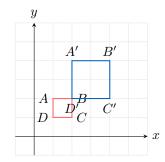
- 1. Identify the transformation.
- 2. Write down the transformation equation in the form $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Answer:

1. Identify the transformation:

- The square ABCD has width 3-1=2 and height 3-1=2
- The rectangle A'B'C'D' has width 3-1=2 and height 6-2=4.
- The width remains unchanged, but the height is multiplied by 2. This indicates a vertical stretch by scale factor k = 2.
- Check point D(1,1): A vertical stretch by 2 should map $(x,y) \to (x,2y)$. $D(1,1) \to (1,2)$, which matches D'.
- Therefore, the transformation is a vertical stretch with scale factor 2.
- 2. Since it is a vertical stretch by factor 2, the matrix is $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. The equation is $\mathbf{x}' = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{x}$.

Ex 21: A linear transformation maps square ABCD onto square A'B'C'D'.



- 1. Identify the transformation.
- 2. Write down the transformation equation in the form $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

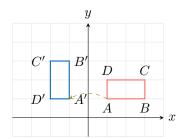
Answer:

1. Identify the transformation:

- The square ABCD has side length 1.
- The square A'B'C'D' has side length 2.

- Both dimensions are multiplied by 2. This suggests an enlargement (homothety).
- Check point C(2,1): An enlargement of scale factor 2 centered at the origin maps $(x,y) \rightarrow (2x,2y)$. $C(2,1) \rightarrow (4,2)$, which matches C'.
- Therefore, the transformation is an enlargement with scale factor 2 centered at the origin.
- 2. Since it is an enlargement by factor 2, the matrix is $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. The equation is $\mathbf{x}' = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{x}$.

Ex 22: A linear transformation maps rectangle ABCD onto rectangle A'B'C'D'.



- 1. Identify the transformation.
- 2. Write down the transformation equation in the form $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Answer:

1. Identify the transformation:

- The shape has been rotated.
- Let's check point B(3,1). Its image is B'(-1,3).
- The distance from the origin is preserved $(\sqrt{3^2 + 1^2} = \sqrt{(-1)^2 + 3^2})$.
- The angle of B is $\arctan(1/3) \approx 18.4^{\circ}$. The angle of B' is $180^{\circ} \arctan(3) \approx 108.4^{\circ}$. The difference is 90° .
- We can verify with $A(1,1) \to A'(-1,1)$. This is clearly a 90° turn to the left.
- Therefore, the transformation is a rotation of $\frac{\pi}{2}$ (90°) anti-clockwise about the origin.
- 2. The matrix for a rotation of $\frac{\pi}{2}$ is $\mathbf{A} = \begin{pmatrix} \cos(\frac{\pi}{2}) & -\sin(\frac{\pi}{2}) \\ \sin(\frac{\pi}{2}) & \cos(\frac{\pi}{2}) \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

 The equation is $\mathbf{x}' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{x}$.

C TRANSLATION

C.1 APPLYING TRANSLATIONS

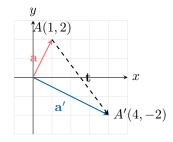
Ex 23: Find the image of the point A(1,2) under a translation by the vector $\mathbf{t} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$.

$$A'(\boxed{4}, \boxed{-2})$$

Answer: A translation maps a point A to A' by adding the translation vector to the position vector: $\mathbf{a}' = \mathbf{a} + \mathbf{t}$.

$$\mathbf{a}' = \begin{pmatrix} 1\\2 \end{pmatrix} + \begin{pmatrix} 3\\-4 \end{pmatrix}$$
$$= \begin{pmatrix} 1+3\\2-4 \end{pmatrix}$$
$$= \begin{pmatrix} 4\\-2 \end{pmatrix}$$

The image is A'(4, -2).



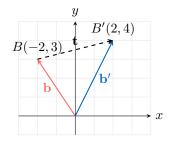
Ex 24: Find the image of the point B(-2,3) under a translation by the vector $\mathbf{t} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$.

$$B'(\boxed{2},\boxed{4})$$

Answer: A translation maps a point B to B' by adding the translation vector to the position vector: $\mathbf{b}' = \mathbf{b} + \mathbf{t}$.

$$\mathbf{b'} = \begin{pmatrix} -2\\3 \end{pmatrix} + \begin{pmatrix} 4\\1 \end{pmatrix}$$
$$= \begin{pmatrix} -2+4\\3+1 \end{pmatrix}$$
$$= \begin{pmatrix} 2\\4 \end{pmatrix}$$

The image is B'(2,4).



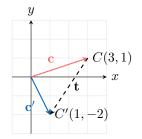
Ex 25: Find the image of the point C(3,1) under a translation by the vector $\mathbf{t} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$.

$$C'(\boxed{1}, \boxed{-2})$$

Answer: A translation maps a point C to C' by adding the translation vector to the position vector: $\mathbf{c}' = \mathbf{c} + \mathbf{t}$.

$$\mathbf{c}' = \begin{pmatrix} 3\\1 \end{pmatrix} + \begin{pmatrix} -2\\-3 \end{pmatrix}$$
$$= \begin{pmatrix} 3-2\\1-3 \end{pmatrix}$$
$$= \begin{pmatrix} 1\\-2 \end{pmatrix}$$

The image is C'(1, -2).



D AFFINE TRANSFORMATION

D.1 APPLYING AN AFFINE TRANSFORMATION

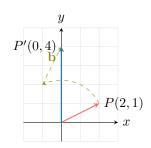
Ex 26: Find the image of the point P(2,1) under the affine transformation defined by $\mathbf{x}' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

$$P'(\boxed{0},\boxed{4})$$

Answer: We apply the linear transformation (rotation) first, then add the translation vector.

$$\mathbf{p}' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$

The image is P'(0,4).



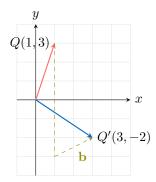
Ex 27: Find the image of the point Q(1,3) under the affine transformation defined by $\mathbf{x}' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

$$Q'(\boxed{3}, \boxed{-2})$$

Answer: We apply the linear transformation (reflection in the x-axis) first, then add the translation vector.

$$\mathbf{q}' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ -3 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

The image is Q'(3, -2).



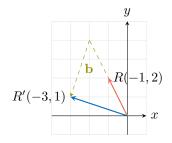
Ex 28: Find the image of the point R(-1,2) under the affine transformation defined by $\mathbf{x}' = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -1 \\ -3 \end{pmatrix}$.

$$R'(\boxed{-3},\boxed{1})$$

Answer: We apply the linear transformation (enlargement scale factor 2) first, then add the translation vector.

$$\mathbf{r}' = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} + \begin{pmatrix} -1 \\ -3 \end{pmatrix}$$
$$= \begin{pmatrix} -2 \\ 4 \end{pmatrix} + \begin{pmatrix} -1 \\ -3 \end{pmatrix}$$
$$= \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

The image is R'(-3,1).



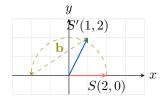
Ex 29: Find the image of the point S(2,0) under the affine transformation defined by $\mathbf{x}' = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

$$S'(\boxed{1},\boxed{2})$$

Answer: We apply the linear transformation (rotation of 180°) first, then add the translation vector.

$$\mathbf{s}' = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} -2 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

The image is S'(1,2).



D.2 IDENTIFYING THE TRANSFORMATION

Ex 30: An affine transformation is defined by $\mathbf{x}' = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -2 \\ 5 \end{pmatrix}$.

- 1. Find the image of the origin O(0,0).
- 2. Find the image of the point A(1,4).
- 3. Describe the transformation geometrically.

Answer:

1. Image of Origin:

$$\mathbf{o}' = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ 5 \end{pmatrix} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}.$$

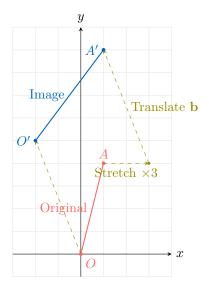
Image is (-2,5).

2. Image of A:

$$\mathbf{a}' = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \begin{pmatrix} -2 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} + \begin{pmatrix} -2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 9 \end{pmatrix}.$$

Image is (1,9).

3. **Description:** It is a horizontal stretch by scale factor 3 followed by a translation by vector $\begin{pmatrix} -2 \\ 5 \end{pmatrix}$.



Ex 31: An affine transformation is defined by $\mathbf{x}' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

- 1. Find the image of the origin O(0,0).
- 2. Find the image of the point A(2,0).
- 3. Describe the transformation geometrically.

Answer:

1. Image of Origin:

$$\mathbf{o}' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

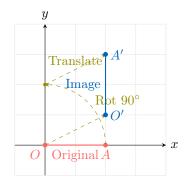
Image is (2,1).

2. Image of A:

$$\mathbf{a}' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

Image is (2,3).

3. **Description:** It is a rotation of 90° $(\frac{\pi}{2})$ anti-clockwise about the origin, followed by a translation by vector $\begin{pmatrix} 2\\1 \end{pmatrix}$.



E COMPOSITION OF TRANSFORMATIONS

E.1 FINDING THE MATRIX REPRESENTATION

Ex 32: Find the single matrix representing a reflection in the y-axis followed by a horizontal stretch of scale factor 3.

$$\mathbf{T} = \begin{pmatrix} \boxed{-3} & \boxed{0} \\ \boxed{0} & \boxed{1} \end{pmatrix}$$

Answer: Reflection in y-axis: $\mathbf{M}_y = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Horizontal stretch (factor 3): $\mathbf{S} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$.

The combined transformation is $\mathbf{T} = \mathbf{SM}_y$ (stretch applied **after** reflection).

$$\mathbf{T} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 3(-1) + 0(0) & 3(0) + 0(1) \\ 0(-1) + 1(0) & 0(0) + 1(1) \end{pmatrix}$$
$$= \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$$

Ex 33: Find the single matrix representing a rotation of 90° anti-clockwise followed by a vertical stretch of scale factor 2.

$$\mathbf{T} = \begin{pmatrix} \boxed{0} & \boxed{-1} \\ \boxed{2} & \boxed{0} \end{pmatrix}$$

Answer: Rotation of 90°: $\mathbf{R}_{90} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Vertical stretch (factor 2): $\mathbf{S} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

The combined transformation is $\mathbf{T} = \mathbf{S}\mathbf{R}_{90}$ (stretch applied **after** rotation).

$$\mathbf{T} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1(0) + 0(1) & 1(-1) + 0(0) \\ 0(0) + 2(1) & 0(-1) + 2(0) \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}$$

Ex 34: Find the single matrix representing a horizontal stretch of scale factor 4 followed by a reflection in the x-axis.

$$\mathbf{T} = \begin{pmatrix} \boxed{4} & \boxed{0} \\ \boxed{0} & \boxed{-1} \end{pmatrix}$$

Answer: Horizontal stretch (factor 4): $\mathbf{S} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$.

Reflection in x-axis: $\mathbf{M}_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

The combined transformation is $\mathbf{T} = \mathbf{M}_x \mathbf{S}$ (reflection applied after stretch).

$$\begin{split} \mathbf{T} &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1(4) + 0(0) & 1(0) + 0(1) \\ 0(4) + (-1)(0) & 0(0) + (-1)(1) \end{pmatrix} \\ &= \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix} \end{split}$$

E.2 FINDING THE COMPOSITE MATRIX

Ex 35: Let T_1 be a rotation of 90° anti-clockwise and T_2 be a reflection in the line y = x.

- 1. Find the matrix **A** for T_1 and **B** for T_2 .
- 2. Calculate the matrix for the composite transformation $T_2 \circ T_1$ (T_1 followed by T_2).
- 3. Identify the resulting transformation.

Answer:

1. Matrices:

$$\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

2. The composite matrix is C = BA.

$$\mathbf{C} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0(0) + 1(1) & 0(-1) + 1(0) \\ 1(0) + 0(1) & 1(-1) + 0(0) \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

3. The resulting matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ represents a reflection in the x-axis.

Ex 36: Let T_1 be a reflection in the x-axis and T_2 be a reflection in the y-axis.

- 1. Find the matrix **A** for T_1 and **B** for T_2 .
- 2. Calculate the matrix for the composite transformation $T_2 \circ T_1$ (T_1 followed by T_2).
- 3. Identify the resulting transformation.

Answer:

1. Matrices:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

2. The composite matrix is C = BA.

$$\mathbf{C} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} -1(1) + 0(0) & -1(0) + 0(-1) \\ 0(1) + 1(0) & 0(0) + 1(-1) \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

3. The resulting matrix $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ represents a rotation of 180° (π radians) about the origin (or a point reflection in the origin).

Ex 37: Let T_1 be a reflection in the line y = x and T_2 be a reflection in the x-axis.

- 1. Find the matrix **A** for T_1 and **B** for T_2 .
- 2. Calculate the matrix for the composite transformation $T_2 \circ T_1$ (T_1 followed by T_2).
- 3. Identify the resulting transformation.

Answer:

1. Matrices:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

2. The composite matrix is C = BA.

$$\mathbf{C} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1(0) + 0(1) & 1(1) + 0(0) \\ 0(0) + (-1)(1) & 0(1) + (-1)(0) \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

3. The resulting matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ represents a rotation of 90° clockwise (or 270° anti-clockwise) about the origin.

E.3 CALCULATING AND INVERTING COMPOSITE MATRICES

Ex 38: Consider two transformations:

- T_1 : A reflection in the line $y = x\sqrt{3}$.
- T_2 : An enlargement centered at the origin with scale factor 2.
- 1. Find the matrix **A** representing T_1 . (Recall: $\tan(60^\circ) = \sqrt{3}$).
- 2. Find the matrix **B** representing T_2 .
- 3. Find the matrix C representing the composite transformation T_1 followed by T_2 .
- 4. Find the image of the point Q(2,0) under this composite transformation.
- 5. Find the coordinates of point R such that its image under this composite transformation is $R'(2, 2\sqrt{3})$.

(You are given that
$$\mathbf{C}^{-1} = \begin{pmatrix} -0.25 & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & 0.25 \end{pmatrix}$$
).

Answer.

1. Matrix A:

The line $y = x\sqrt{3}$ has an angle $\theta = 60^{\circ}$. Reflection matrix $\mathbf{A} = \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}$. With $2\theta = 120^{\circ}$:

$$\mathbf{A} = \begin{pmatrix} \cos 120^\circ & \sin 120^\circ \\ \sin 120^\circ & -\cos 120^\circ \end{pmatrix} = \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}.$$

2. **Matrix** *B*:

Enlargement scale factor 2:

$$\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

3. Matrix C:

 T_1 followed by T_2 means $\mathbf{C} = \mathbf{B}\mathbf{A}$.

$$\mathbf{C} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -0.5 & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & 0.5 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$$

4. **Image of** Q(2,0):

$$\mathbf{q}' = \mathbf{C}\mathbf{q}$$

$$= \begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 2\sqrt{3} \end{pmatrix}$$

The image is $(-2, 2\sqrt{3})$.

5. Finding R:

We need to find \mathbf{r} such that $\mathbf{Cr} = \mathbf{r}'$. We use the given inverse matrix $\mathbf{r} = \mathbf{C}^{-1}\mathbf{r}'$.

$$\mathbf{r} = \begin{pmatrix} -0.25 & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & 0.25 \end{pmatrix} \begin{pmatrix} 2 \\ 2\sqrt{3} \end{pmatrix}$$
$$= \begin{pmatrix} -0.25(2) + \frac{\sqrt{3}}{4}(2\sqrt{3}) \\ \frac{\sqrt{3}}{4}(2) + 0.25(2\sqrt{3}) \end{pmatrix}$$
$$= \begin{pmatrix} -0.5 + 1.5 \\ \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$$

So $R(1, \sqrt{3})$.

Ex 39: Consider two transformations:

- T_1 : A shear parallel to the x-axis that maps (1,0) to (1,0) and (0,1) to (2,1).
- T_2 : A rotation of 90° anti-clockwise about the origin.
- 1. Find the matrix **A** representing T_1 .
- 2. Find the matrix **B** representing T_2 .
- 3. Find the matrix C representing the composite transformation T_1 followed by T_2 .
- 4. Find the image of the point P(1,1) under this composite transformation.
- 5. Find the coordinates of point S such that its image under this composite transformation is S'(-1,5).

(You are given that
$$\mathbf{C}^{-1} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$$
).

Answer:

1. Matrix A:

The columns of the matrix are the images of the basis vectors $\mathbf{i}(1,0)$ and $\mathbf{j}(0,1)$.

$$T_1(\mathbf{i}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $T_1(\mathbf{j}) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}.$$

2. Matrix B:

Rotation of 90° anti-clockwise:

$$\mathbf{B} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

3. Matrix C:

 T_1 followed by T_2 means $\mathbf{C} = \mathbf{B}\mathbf{A}$.

$$\mathbf{C} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$$

4. **Image of** P(1,1)**:**

$$\mathbf{p}' = \mathbf{C}\mathbf{p}$$

$$= \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

The image is (-1,3).

5. Finding S:

We need to find \mathbf{s} such that $\mathbf{C}\mathbf{s} = \mathbf{s}'$. We use the given inverse matrix $\mathbf{s} = \mathbf{C}^{-1}\mathbf{s}'$.

$$\mathbf{s} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$
$$= \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

So S(3,1).

F AREA AND DETERMINANT

F.1 FINDING THE AREA OF THE IMAGE

Ex 40: A rectangle has area 10 square units. It is transformed by the matrix $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$.

Find the area of the rectangle image.

$$Area(S') = \boxed{100}$$
 square units

Answer:

$$det(\mathbf{A}) = (3)(4) - (1)(2)$$

$$= 12 - 2$$

$$= 10$$

The area scale factor is $|\det(\mathbf{A})| = 10$.

$$\begin{aligned} \operatorname{Area}(S') &= 10 \times \operatorname{Area}(S) \\ &= 10 \times 10 \\ &= 100 \text{ square units} \end{aligned}$$

Ex 41: A triangle has an area of 5 square units. It is transformed by the matrix $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}$.

Find the area of the image of the triangle.

$$Area(S') = \boxed{30}$$
 square units

Answer:

$$det(\mathbf{B}) = (2)(3) - (0)(1)$$
= 6 - 0
= 6

The area scale factor is $|\det(\mathbf{B})| = |6| = 6$.

$$Area(S') = 6 \times Area(S)$$

$$= 6 \times 5$$

$$= 30 \text{ square units}$$

Ex 42: A polygon has an area of 4 square units. It is transformed by the matrix $\mathbf{C} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

Find the area of the image of the polygon.

 $Area(S') = \boxed{8}$ square units

Answer:

$$det(\mathbf{C}) = (1)(4) - (3)(2)$$
= 4 - 6
= -2

The area scale factor is the absolute value of the determinant: $|\det(\mathbf{C})| = |-2| = 2$.

$$Area(S') = 2 \times Area(S)$$

$$= 2 \times 4$$

$$= 8 \text{ square units}$$

F.2 FINDING UNKNOWNS USING AREA

Ex 43: Let T be a linear transformation defined by the matrix $\mathbf{M} = \begin{pmatrix} k & 2 \\ 1 & 4 \end{pmatrix}$, where k is a constant.

A triangle with area 10 cm^2 is transformed by T into an image triangle with area 180 cm^2 .

- 1. Write down an expression for the determinant of \mathbf{M} in terms of k.
- 2. Find the two possible values of k.
- 3. Given that the transformation preserves the orientation of the shape (i.e., the determinant is positive), find the value of k.

Answer:

1. Determinant:

$$\det(\mathbf{M}) = (k)(4) - (2)(1) = 4k - 2.$$

2. Possible values of k:

The area scale factor is $|\det(\mathbf{M})|$.

$$Area(S') = |\det(\mathbf{M})| \times Area(S)$$
$$180 = |4k - 2| \times 10$$
$$18 = |4k - 2|$$

This leads to two cases:

$$4k - 2 = 18$$
 or $4k - 2 = -18$
 $4k = 20$ $4k = -16$
 $k = 5$ $k = -4$

The possible values are k = 5 and k = -4.

3. Orientation preserved:

Preserving orientation implies $det(\mathbf{M}) > 0$.

If
$$k = 5$$
, $det(\mathbf{M}) = 18 > 0$.

If
$$k = -4$$
, $\det(\mathbf{M}) = -18 < 0$.

Therefore, k = 5.

Ex 44: Let T be a linear transformation defined by the matrix $\mathbf{A} = \begin{pmatrix} 3 & x \\ 1 & 2 \end{pmatrix}$, where x is a constant.

A parallelogram with area 5 ${\rm cm^2}$ is transformed by T into an image with area 30 ${\rm cm^2}.$

- 1. Write down an expression for the determinant of \mathbf{A} in terms of x.
- 2. Find the two possible values of x.
- 3. Given that the transformation reverses the orientation of the shape (i.e., the determinant is negative), find the value of x.

Answer:

1. Determinant:

$$\det(\mathbf{A}) = (3)(2) - (x)(1) = 6 - x.$$

2. Possible values of x:

The area scale factor is $|\det(\mathbf{A})|$.

$$Area(S') = |\det(\mathbf{A})| \times Area(S)$$
$$30 = |6 - x| \times 5$$
$$6 = |6 - x|$$

This leads to two cases:

$$6-x=6$$
 or $-(6-x)=-6$
 $-x=0$ $-x=-12$
 $x=0$ $x=12$

The possible values are x = 0 and x = 12.

3. Orientation reversed:

Reversing orientation implies $\det(\mathbf{A}) < 0$. If x = 0, $\det(\mathbf{A}) = 6 - 0 = 6 > 0$ (Preserves). If x = 12, $\det(\mathbf{A}) = 6 - 12 = -6 < 0$ (Reverses). Therefore, x = 12.