AFFINE TRANSFORMATIONS

A LINEAR TRANSFORMATIONS

A.1 APPLYING LINEAR TRANSFORMATIONS

Ex 1: Find the image of the point P(3,-2) under the transformation defined by the matrix $\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$.

Ex 2: Find the image of the point Q(4,1) under the transformation defined by the matrix $\mathbf{B} = \begin{pmatrix} -1 & 2 \\ 3 & 0 \end{pmatrix}$.

Ex 3: Find the image of the point R(-2,5) under the transformation defined by the matrix $\mathbf{M} = \begin{pmatrix} 1 & 3 \\ -2 & 2 \end{pmatrix}$.

Ex 4: Find the image of the point S(2,3) under the transformation defined by the matrix $\mathbf{C} = \begin{pmatrix} 4 & -2 \\ 1 & 3 \end{pmatrix}$.

B STANDARD TRANSFORMATIONS

LINEAR

B.1 FINDING THE MATRIX REPRESENTATION

Ex 5: Find the matrix representing a vertical stretch by a factor of 4.

$$S = \left(\begin{array}{c|c} \end{array} \right)$$

Ex 6: Find the matrix representing a horizontal stretch by a factor of 3.

$$\mathbf{S} = \left(\begin{array}{|c|c|} \hline \\ \hline \end{array} \right)$$

Ex 7: Find the matrix representing a reflection in the x-axis.

$$\mathbf{M} = \left(\begin{array}{c|c} & & \\ & & \end{array} \right)$$

Ex 8: Find the matrix representing a reflection in the y-axis.

$$\mathbf{M} = \begin{pmatrix} \mathbf{M} & \mathbf{M} \end{pmatrix}$$

Ex 9: Find the matrix representing a reflection in the line y = x.

$$\mathbf{M} = \left(\begin{array}{c|c} \\ \end{array} \right)$$

Ex 10: Find the matrix representing an enlargement (homothety) centered at the origin with a scale factor of 2.

$$\mathbf{H} = \left(\begin{array}{c|c} \end{array} \right)$$

Ex 11: Find the matrix representing a rotation of $\frac{\pi}{2}$ radians anti-clockwise about the origin.

$$\mathbf{R} = \left(\begin{array}{c|c} & & \\ \hline & & \\ \end{array} \right)$$

MCQ 12: The transformation T is a reflection in the line $y = x\sqrt{3}$.

Find the matrix T that represents this transformation.

$$\Box \mathbf{T} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$\Box \mathbf{T} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

$$\Box \mathbf{T} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$$

$$\square \mathbf{T} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

MCQ 13: The transformation T is a reflection in the line $y = -x\sqrt{3}$.

Find the matrix T that represents this transformation.

$$\Box \mathbf{T} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

$$\Box \mathbf{T} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$\square \mathbf{T} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

$$\Box \mathbf{T} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

B.2 APPLYING TRANSFORMATIONS

STANDARD

LINEAR

Ex 14: Find the image of the point A(2,5) under a reflection in the x-axis.

Ex 15: Find the image of the point A(2,0) under a rotation of $\frac{\pi}{4}$ radians (45°) anti-clockwise about the origin.

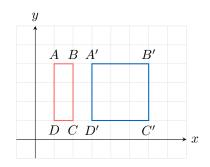
Ex 16: Find the image of the point A(3,4) under a reflection in the y-axis.

Ex 17: Find the image of the point A(1,2) under an enlargement centered at the origin with a scale factor of 3.

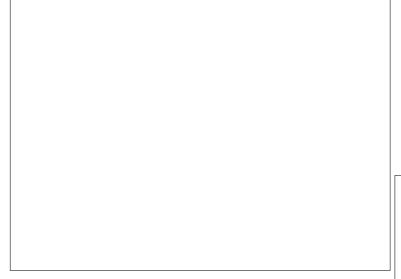
Ex 18: Find the image of the point A(4,-1) under a rotation of π radians (180°) about the origin.

B.3 IDENTIFYING THE TRANSFORMATION

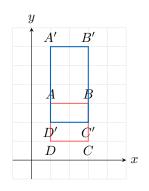
Ex 19: A linear transformation maps rectangle ABCD onto square A'B'C'D'.



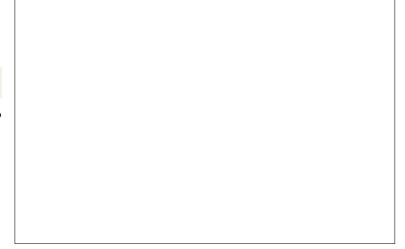
- 1. Identify the transformation.
- 2. Write down the transformation equation in the form $\mathbf{x}' = \mathbf{A}\mathbf{x}$.



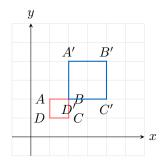
Ex 20: A linear transformation maps square ABCD onto rectangle A'B'C'D'.



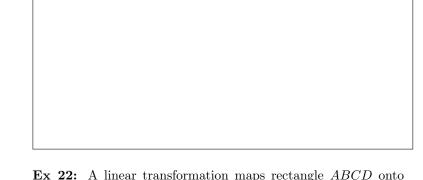
- 1. Identify the transformation.
- 2. Write down the transformation equation in the form $\mathbf{x}' = \mathbf{A}\mathbf{x}$.



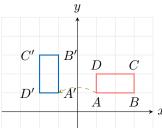
Ex 21: A linear transformation maps square ABCD onto square A'B'C'D'.



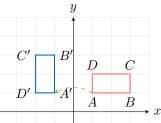
- 1. Identify the transformation.
- 2. Write down the transformation equation in the form $\mathbf{x}' = \mathbf{A}\mathbf{x}$.



Ex 22: A linear transformation maps rectangle ABCD onto rectangle A'B'C'D'.



- 1. Identify the transformation.
- 2. Write down the transformation equation in the form $\mathbf{x}' =$



C TRANSLATION

C.1 APPLYING TRANSLATIONS

Ex 23: Find the image of the point A(1,2) under a translation by the vector $\mathbf{t} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$.

Ex 24: Find the image of the point B(-2,3) under a translation by the vector $\mathbf{t} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$.

Ex 25: Find the image of the point C(3,1) under a translation by the vector $\mathbf{t} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$.

AFFINE TRANSFORMATION

D.1 APPLYING AN AFFINE TRANSFORMATION

Ex 26: Find the image of the point P(2,1) under the affine transformation defined by $\mathbf{x}' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Ex 27: Find the image of the point Q(1,3) under the affine transformation defined by $\mathbf{x}' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Ex 28: Find the image of the point R(-1,2) under the affine transformation defined by $\mathbf{x}' = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -1 \\ -3 \end{pmatrix}$.

Ex 29: Find the image of the point S(2,0) under the affine transformation defined by $\mathbf{x}' = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

D.2 IDENTIFYING THE TRANSFORMATION

Ex 30: An affine transformation is defined by $\mathbf{x}' = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} +$

- 1. Find the image of the origin O(0,0).
- 2. Find the image of the point A(1,4).
- 3. Describe the transformation geometrically.

Ex 31: An affine transformation is defined by $\mathbf{x}' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{x} +$ $\binom{2}{1}$.

- 1. Find the image of the origin O(0,0).
- 2. Find the image of the point A(2,0).
- 3. Describe the transformation geometrically.

Ex in 1
2
3
E COMPOSITION OF TRANSFORMATIONS

E.1 FINDING THE MATRIX REPRESENTATION

Example 20. Find the size of a state of the size of t

Ex 32: Find the single matrix representing a reflection in the y-axis followed by a horizontal stretch of scale factor 3.

$$\mathbf{T} = \begin{pmatrix} \boxed{} \\ \boxed{} \end{pmatrix}$$

Ex 33: Find the single matrix representing a rotation of 90° anti-clockwise followed by a vertical stretch of scale factor 2.

$$T = \begin{pmatrix} & & & \\ & & & & \end{pmatrix}$$

Ex 34: Find the single matrix representing a horizontal stretch of scale factor 4 followed by a reflection in the *x*-axis.

$$\mathbf{T} = \left(\begin{array}{c|c} & & \\ & & \end{array} \right)$$

E.2 FINDING THE COMPOSITE MATRIX

Ex 35: Let T_1 be a rotation of 90° anti-clockwise and T_2 be a reflection in the line y = x.

- 1. Find the matrix **A** for T_1 and **B** for T_2 .
- 2. Calculate the matrix for the composite transformation $T_2 \circ T_1$ (T_1 followed by T_2).
- 3. Identify the resulting transformation.

Ex 36: Let T_1 be a reflection in the x-axis and T_2 be a reflection in the y-axis.

- 1. Find the matrix **A** for T_1 and **B** for T_2 .
- 2. Calculate the matrix for the composite transformation $T_2 \circ T_1$ (T_1 followed by T_2).
- $3. \ \, \text{Identify the resulting transformation.}$

Ex 37: Let T_1 be a reflection in the line y = x and T_2 be a reflection in the x-axis.

- 1. Find the matrix **A** for T_1 and **B** for T_2 .
- 2. Calculate the matrix for the composite transformation $T_2 \circ T_1$ (T_1 followed by T_2).
- 3. Identify the resulting transformation.

E.3 CALCULATING AND INVERTING COMPOSITE MATRICES

Ex 38: Consider two transformations:

- T_1 : A reflection in the line $y = x\sqrt{3}$.
- T_2 : An enlargement centered at the origin with scale factor
- 1. Find the matrix **A** representing T_1 . (Recall: $\tan(60^\circ) = \sqrt{3}$).
- 2. Find the matrix **B** representing T_2 .

- 3. Find the matrix C representing the composite transformation T_1 followed by T_2 .
- 4. Find the image of the point Q(2,0) under this composite transformation.
- 5. Find the coordinates of point R such that its image under this composite transformation is $R'(2, 2\sqrt{3})$.

(You are given that $\mathbf{C}^{-1} = \begin{pmatrix} -0.25 & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & 0.25 \end{pmatrix}$).

Consider two transformations:

- T_1 : A shear parallel to the x-axis that maps (1,0) to (1,0)and (0,1) to (2,1).
- T_2 : A rotation of 90° anti-clockwise about the origin.
- 1. Find the matrix **A** representing T_1 .
- 2. Find the matrix **B** representing T_2 .
- 3. Find the matrix **C** representing composite the transformation T_1 followed by T_2 .
- 4. Find the image of the point P(1,1) under this composite transformation.
- 5. Find the coordinates of point S such that its image under this composite transformation is S'(-1,5). (You are given that $\mathbf{C}^{-1} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$).

F AREA AND DETERMINANT

F.1 FINDING THE AREA OF THE IMAGE

Ex 40: A rectangle has area 10 square units. It is transformed by the matrix $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$.

Find the area of the rectangle image.

$$Area(S') =$$
 square units

 \mathbf{Ex} 41: A triangle has an area of 5 square units. It is transformed by the matrix $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}$.

Find the area of the image of the triangle.

$$Area(S') =$$
 square units

Ex 42: A polygon has an area of 4 square units. It is transformed by the matrix $\mathbf{C} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

Find the area of the image of the polygon.

$$Area(S') = \Box$$
 square units

F.2 FINDING UNKNOWNS USING AREA

Ex 43: Let T be a linear transformation defined by the matrix $\mathbf{M} = \begin{pmatrix} k & 2 \\ 1 & 4 \end{pmatrix}$, where k is a constant.

A triangle with area 10 cm^2 is transformed by T into an image triangle with area 180 cm^2 .

- 1. Write down an expression for the determinant of **M** in terms of k.
- 2. Find the two possible values of k.
- 3. Given that the transformation preserves the orientation of the shape (i.e., the determinant is positive), find the value of k.

Ex 44: Let T be a linear transformation defined by the matrix $\mathbf{A} = \begin{pmatrix} 3 & x \\ 1 & 2 \end{pmatrix}$, where x is a constant. A parallelogram with area 5 cm ² is transformed by T into an image with area 30 cm ² .
1. Write down an expression for the determinant of $\bf A$ in terms of x .
2. Find the two possible values of x .
3. Given that the transformation reverses the orientation of the shape (i.e., the determinant is negative), find the value of x .