3-DIGIT NUMBERS

A DEFINITIONS

Discover:

• We can group 10 ones into 1 ten:

• We can also group 10 tens into 1 hundred:

• To count how many hundreds, tens, and ones there are, we can make a table:

Hundreds	Tens	Ones
2	4	3
		000

The table tells us we have 2 hundreds, 4 tens, and 3 ones, which we can write in positional notation as 243.

Definition **Digits**

A digit is a single symbol representing a number.

zero	0	
one	1	
two	2	
three	3	
four	4	
five	5	
six	6	
seven	7	1 1 1 1 1 1 1 1 1
eight	8	1 1 1 1 1 1 1 1 1
nine	9	0 00 00 00

2

Definition Base 10 system _ In the base 10-system, the place of a digit in a number determines its value. We can represent a number: • with digits: 243• in expanded form: 2 hundreds + 4 tens +3 ones 200 +3 40 +• with words: two hundred forty-three • in a table: Hundreds Tens Ones $\mathbf{2}$ 3 4 • with cubes: 3 ones 2 hundreds

Zero acts as a placeholder to show there is nothing in a certain position. For example, in 20, zero shows there are no ones.

B ON THE NUMBER LINE

Discover:

• A number line shows numbers like 0, 1, 2, 3, and so on in order.

• Let's make counting easier by counting by tens on our number line. Now we jump 10 at a time: 0, 10, 20, 30.

