
THREE-DIMENSIONAL SHAPES

A THREE-DIMENSIONAL SHAPES

Definition Solid Geometry —

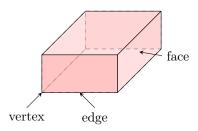
In solid geometry, we study **three-dimensional (3D) shapes**, such as cubes, cylinders, and spheres. The diagrams below show some examples of these shapes.

Definition Surface —

A surface is the outside of a three-dimensional (3D) shape. It is the part of the shape you can touch.

Definition Face

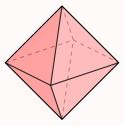
A face is a flat surface on a three-dimensional shape.


Definition Edge ____

An edge is a straight line where two faces meet.

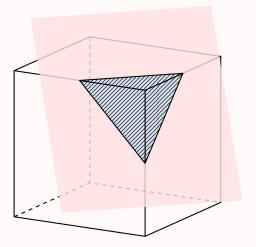
Definition Vertex -

A vertex is a corner of a three-dimensional shape. It is a point where two or more edges meet.


Ex: This box-shaped solid has many faces, edges, and vertices. One example of each is shown.

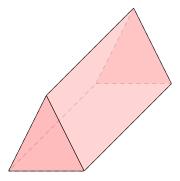
B POLYHEDRON

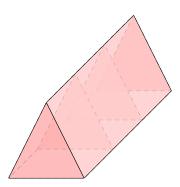
Definition Polyhedron -


A **polyhedron** is a three-dimensional solid with flat faces that are polygons.

C CROSS SECTIONS

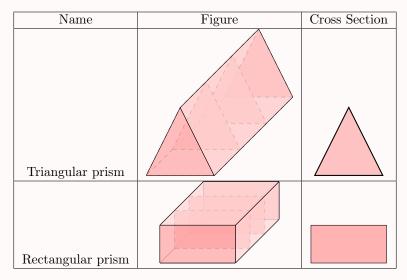
Definition Cross Section


A cross section of a solid is the two-dimensional (flat) shape made when a plane cuts through the solid.


Definition Uniform Cross Section -

A uniform cross section means that, when you slice the solid in the same direction, the cross section has the same size and shape at every point along its length.

Ex: Does this solid have a uniform cross section?



Answer: Yes. When sliced perpendicular to its length, each cross section is a triangle of the same size and shape. So it has a uniform cross section. The solid is a triangular prism.

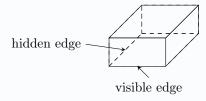
Definition Prism -

A **prism** is a polyhedron that has a uniform cross section which is a polygon. It has two identical, parallel faces called bases, and all the other faces are rectangles. Prisms are named according to the shape of their base.

D CLASSIFICATION

Definition Classification

We can classify 3D shapes by the number of faces, edges, and vertices they have.

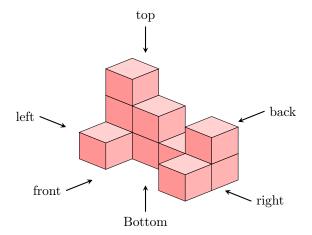

Name	Shape	Faces	Edges	Vertices
Cube (square prism)		6 (flat)	12	8
Sphere		1 (curved)	0	0
Square Pyramid		5 (flat)	8	5
Cylinder		3 (1 curved, 2 flat)	0	0
Cone		2 (1 curved, 1 flat)	0	0

Note: Cylinders, cones, and spheres are solids but they are not polyhedra because they have curved faces.

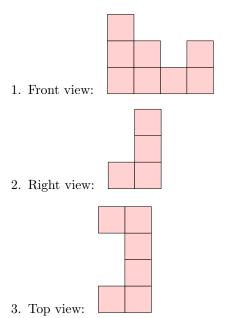
E DRAWING THREE-DIMENSIONAL SHAPES

Method Drawing 3D Shapes -

When we draw 3D (three-dimensional) shapes on paper, we can only see the front of the shape. Some edges are behind and cannot be seen. These are called **hidden edges**. To show that an edge is hidden but still part of the shape, we draw it with dashed lines. Solid lines show the edges we can see.



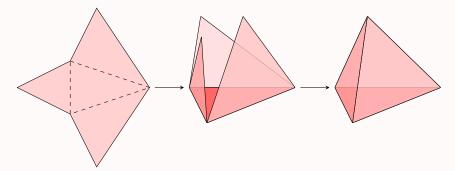
F MULTI-VIEW PROJECTION


Definition Multi-view Projection -

A multi-view projection is a way to show a 3D shape using several 2D drawings. Each drawing shows how the shape looks from a different side, such as the front, the right side, or the top. These views help us understand the shape more clearly.

Ex: Draw the front, right, and top views of this solid.

Answer:



Each small square in a view represents one cube of the solid seen from that side.

G SOLID CONSTRUCTIONS

Definition **Net**

A **net** of a solid is a flat 2D figure that can be folded along its edges to form a 3D solid. Dashed lines show where to fold.

5