\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
Courses
Login
Register
The random variable \(X\) represents the number of siblings a student in a class has. The probability distribution for \(X\) is shown below:
\(x\) (siblings)
0
1
2
3
\(P(X = x)\)
0.3
0.4
0.2
0.1
Calculate the standard deviation \(\sigma(X)\), which shows how much the number of siblings typically varies from the average per student (
calculatrice
!
e
\(\pi\)
(
)
%
AC
sin
cos
tan
7
8
9
/
\(\sin^{-1}\)
\(\cos^{-1}\)
\(\tan^{-1}\)
4
5
6
*
\(x^2\)
\(\sqrt{\phantom{2}}\)
x
y
1
2
3
-
ln
exp
log
0
.
=
+
and round to two decimal places).
\(\sigma(X) = \)
7
8
9
+
4
5
6
-
1
2
3
*
C
0
.
÷
Exit