\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
Courses
Login
Register
The random variable \(X\) represents the number of customers served by a cashier in an hour, with the probability distribution given below:
\(x\)
0
1
2
3
4
\(P(X = x)\)
0.15
0.2
0.35
0.25
0.05
Calculate the expected value \(E(X)\), the average number of customers served per hour (
calculatrice
!
e
\(\pi\)
(
)
%
AC
sin
cos
tan
7
8
9
/
\(\sin^{-1}\)
\(\cos^{-1}\)
\(\tan^{-1}\)
4
5
6
*
\(x^2\)
\(\sqrt{\phantom{2}}\)
x
y
1
2
3
-
ln
exp
log
0
.
=
+
).
\(E(X) = \)
7
8
9
+
4
5
6
-
1
2
3
*
C
0
.
÷
Exit