\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
The random variable \(X\) represents the number of hours a student spends studying on a weekend, with the probability distribution given below:
\(x\) 0 1 2 3 4
\(P(X = x)\) 0.2 0.25 0.3 0.15 0.1
Calculate the expected value \(E(X)\), the average number of hours spent studying per weekend (
! e \(\pi\) ( ) % AC sin cos tan 7 8 9 / \(\sin^{-1}\) \(\cos^{-1}\) \(\tan^{-1}\) 4 5 6 * \(x^2\) \(\sqrt{\phantom{2}}\) xy 1 2 3 - ln exp log 0 . = +
).
\(E(X) = \)