\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
The random variable \(X\) represents the number of goals scored by a soccer player in a match, with the probability distribution given below:
\(x\) 0 1 2 3
\(P(X = x)\) 0.1 0.3 0.5 0.1
Calculate the expected value \(E(X)\), the average number of goals scored per match (
! e \(\pi\) ( ) % AC sin cos tan 7 8 9 / \(\sin^{-1}\) \(\cos^{-1}\) \(\tan^{-1}\) 4 5 6 * \(x^2\) \(\sqrt{\phantom{2}}\) xy 1 2 3 - ln exp log 0 . = +
).
\(E(X) = \)