For her birthday, Su invites her friends to the cinema. She was supposed to pay \(\textcolor{colorprop}{28}\) dollars for \(\textcolor{colordef}{4}\) tickets. Eventually, Su's parents decide to join and offer to pay.
Knowing that the price is proportional to the number of tickets, how much will Su's parents pay for \(\textcolor{colordef}{6}\) tickets?
- Method 1: Coefficient of Proportionality
- The coefficient of proportionality is:$$\begin{aligned}\textcolor{olive}{\text{Coefficient}}&= \dfrac{\textcolor{colorprop}{\text{Price}}}{\textcolor{colordef}{\text{Number of Tickets}}} \\&= \dfrac{\textcolor{colorprop}{28}}{\textcolor{colordef}{4}} \\&= \textcolor{olive}{7}\end{aligned}$$

- For \(\textcolor{colordef}{6}\) tickets, the price is:$$\begin{aligned}\textcolor{colorprop}{\text{Price}} &=\textcolor{olive}{\text{Coefficient}}\times \textcolor{colordef}{\text{Number of Tickets}}\\&=\textcolor{olive}{7} \times \textcolor{colordef}{6} \\&= \textcolor{colorprop}{42\text{ dollars per ticket}}\end{aligned}$$Therefore, \(\textcolor{colordef}{6}\) tickets cost \(\textcolor{colorprop}{42}\) dollars.
- Method 2: Cross Multiplication in a Proportional Table
We apply cross multiplication:$$\begin{aligned}\textcolor{colordef}{4} \times \textcolor{colorprop}{x} &= \textcolor{colorprop}{28} \times \textcolor{colordef}{6} \\\textcolor{colorprop}{x} &= \textcolor{colorprop}{28} \times \textcolor{colordef}{6}\div \textcolor{colordef}{4} \\\textcolor{colorprop}{x} &= \textcolor{colorprop}{42}\end{aligned}$$Therefore, \(\textcolor{colordef}{6}\) tickets cost \(\textcolor{colorprop}{42}\) dollars. - Method 3: Unit Rate with Equivalent Ratios
Thus, \(\textcolor{colordef}{6}\) tickets cost \(\textcolor{colorprop}{42}\) dollars. - Method 4: Proportion Equation$$\begin{aligned}\dfrac{\textcolor{colorprop}{28}}{\textcolor{colordef}{4}} &= \dfrac{\textcolor{colorprop}{x}}{\textcolor{colordef}{6}} \\\textcolor{colordef}{4} \times \textcolor{colorprop}{x} &= \textcolor{colorprop}{28} \times \textcolor{colordef}{6} && \text{(cross multiplication)} \\\textcolor{colorprop}{x} &= \dfrac{\textcolor{colorprop}{28} \times \textcolor{colordef}{6}}{\textcolor{colordef}{4}} \\\textcolor{colorprop}{x} &= \textcolor{colorprop}{42}\end{aligned}$$Therefore, \(\textcolor{colordef}{6}\) tickets cost \(\textcolor{colorprop}{42}\) dollars.
- Method 5: Unit Rate in Words
- \(\textcolor{colordef}{4}\) tickets cost \(\textcolor{colorprop}{28}\) dollars, so \(\textcolor{colordef}{1}\) ticket costs \(\textcolor{colorprop}{28} \div \textcolor{colordef}{4} = \textcolor{olive}{7}\) dollars.
- \(\textcolor{colordef}{6}\) tickets cost \( \textcolor{olive}{7} \times\textcolor{colordef}{6} = \textcolor{colorprop}{42}\) dollars.